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Abstract

This paper describes CHREST+, a computational model which learns perceptual chunks to

solve problems using a diagrammatic representation. Perceptual chunks are pieces of familiar

information, as retrieved by a sensory device. In earlier work on chess expertise, a successful

computational model, CHREST, has been developed of how such chunks can be acquired and

stored  in  a  discrimination  network.  CHREST+  is  an  extended  version  which  learns

associations between chunks for problem and solution states to create a knowledge base of

information for problem solving. We compare the use of chunks by the model and human

subjects in a problem-solving domain where unknown quantities are computed from electric

circuits using a diagrammatic representation. We also discuss how the learning mechanisms

of CHREST+ differ from those of ACT-R and Soar.
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1 INTRODUCTION

The use by humans of perceptual chunks is a central idea in the literature on skill acquisition

(e.g.  Simon, 1981).  However,  computational models of problem solving have not always

made such a representation central  to their  learning mechanisms. Hence the role  of pure

chunking in problem solving has not been sufficiently investigated to determine where more

complex knowledge is required. In addition, theories of efficient representations (e.g. Larkin

& Simon, 1987) suggest that concrete visual information is preferentially used by humans

over the abstract,  making a model  which learns  and uses such information of interest  to

developers of such representations. The aim of this paper is to show that perceptual chunks

can be learnt in a computational model and used to support problem-solving behaviour with a

diagrammatic  representation,  and to  compare  the  model  with  the  performance of  human

subjects. 

This paper proceeds as follows: In the first section we define CHREST+, and describe its

mechanisms for  retrieving and storing perceptual  chunks.  The second section  contains  a

description of a problem-solving domain, where subjects and the model use a diagrammatic

representation to compute unknown quantities in electric circuits. Data from an experimental

study is used to support the theory that humans learn perceptual chunks. The section also

compares the performance of CHREST+ with that of the subjects. The third section compares

the learning mechanisms of CHREST+ with those of ACT-R and Soar.

2 CHREST+ : LEARNING PERCEPTUAL CHUNKS FOR PROBLEM SOLVING

CHREST+  is  an  extended  version  of  CHREST,  originally  derived  from  the  EPAM

(Elementary Perceiver and Memorizer) model of Feigenbaum and Simon (1984). CHREST

(Chunk  Hierarchy  and  REtrieval  STructure)  contains  two  important  extensions  to  the

discrimination network learning mechanisms from the earlier EPAM model: first, CHREST

can  associate  information  between  different  nodes  using  lateral  links  (Gobet,  1996)  and

second, information from several nodes may be grouped into a larger structure known as a

template (Gobet & Simon, in press). This model has proven highly successful in matching

the recall performance of human chess players using both game and random positions (Gobet

& Simon, in press). Further applications of CHREST include learning to play chess (Gobet &

Jansen, 1994),    the balance-beam task (Gobet, 1999) and linguistic phenomena (Croker, Pine

& Gobet, 2000; Gobet & Pine, 1997; Jones, Gobet & Pine, 2000). 

The CHREST+ model further adds an output device (pencil) and specific links (equivalence

links)  in  the  discrimination  network  to  encode  information  about  which  chunks  are

‘solutions’ to which other chunks.  The model is illustrated in Figure 1,  and described as

follows:  first,  how  patterns  are  acquired;  second,  how  patterns  are  stored  within  the
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discrimination network and so become familiar  chunks;  third,  how chunks are combined

within STM to form larger chunks; fourth, how the model uses stored information to help it

solve problems.

2.1 Acquiring patterns from the environment

Perceptual chunks are pieces of familiar information retrieved by a sensory device; although

a variety of patterns may be retrieved, the term ‘chunk’ refers to any unit of information that

has been familiarised and has become meaningful (Richman, Gobet, Staszewski & Simon,

1996). Examples of chunks include: collections of letters retrieved whilst reading, collections

of pieces on a chess board, and groups of components in an electric circuit. The CHREST

model is based on the visual acquisition of chunks, as in chess expertise (Gobet & Simon, in

press), and we employ the same mechanisms for retrieving and combining perceptual chunks

in CHREST+.

Initially, patterns are input to the model via a simulated eye, which obtains information from

a restricted field of view. The simulated eye has two essential procedures: first, a default

strategy for eye movement, e.g. from top to bottom, or following salient features such as

lines;  and second,  a  means for representing what  is  being seen,  i.e.  the features used to

describe the pattern.
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In order for the model to work effectively, the eye-movement strategy and representations

used must be appropriate to the domain under investigation. However, certain fundamental

principles  can  be  used  to  design  a  good  representation  before  testing  the  model.  These

principles  require  the  patterns  retrieved  from  the  environment  to  be  generalisable  and

represent  a  meaningful  decomposition  of  the  domain.  In  the  chess  domain,  this  level  is

naturally that of individual pieces, in the electric circuit domain described below, this level is

that of interconnected resistors. Patterns acquire the status of perceptual chunks once they

have been learnt in the discrimination network, a process described next.

2.2 Storing patterns in the discrimination network

CHREST+ uses a hierarchical retrieval structure, known as a discrimination network, as its

long-term  memory.  Information  learnt  by  the  system  is  stored  in  nodes which  are

interconnected with test links; this stored information, the node images, are the chunks learnt

by the system. Learning a pattern begins by sorting it through the network, beginning from

the root node. Sorting proceeds by following test links; each test link can only be traversed if

the item of information on the link is a part of the current pattern. When no further test links

can be followed, the image at the node reached is returned as the chunk retrieved by that

pattern. The pattern is then compared with the image: If the pattern matches the image, then

familiarisation occurs, in which the image is augmented with information from the pattern. If

the pattern mismatches the image, then discrimination occurs, in which a new node and new

test link are added to the node reached; the new node will have an empty image. The part of

the  pattern  which  mismatches  the  image  is  sorted  through  the  discrimination  network,

beginning from the root node, and the image of the node reached is used as the test for the

new test link; thus, the tests in the network are themselves chunks, and so reflect the amount

of information in the network.

One further learning mechanism is  the ability to form  equivalence links.  These links are

formed based on conditions in the STM, and are described in the next section. 

2.3 Combining chunks in STM

The Short-Term Memory (STM) acts as a store for perceptual chunks which the model is

currently processing. Patterns perceived by the eye are initially passed to the discrimination

network for sorting and learning. As each pattern is sorted through the network, the image at

the node reached is retrieved and entered into STM; this is the perceptual chunk identified by

the system in the current eye fixation. However, the eye has a restricted field of view from

which to retrieve information, and most domains require larger pieces of information to be

manipulated.  The formation of the larger units is the primary function of STM, which is

essentially a queue of chunks. Various lengths of STM can be used, but in the experiments in

this paper the length is set to 4. One of the chunks in STM is identified as the  hypothesis
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chunk: this chunk gathers together information across several eye fixations, thus representing

the largest chunk currently observed.

Information is accumulated in the hypothesis as follows. Initially, STM is empty. On the first

eye fixation,  the chunk retrieved from the discrimination network based on the observed

pattern is placed in the hypothesis slot. On the second eye fixation, the retrieved chunk is first

placed into the STM queue. This chunk is then combined with the hypothesis chunk, the

combined chunk is placed in the hypothesis and passed to the discrimination network for

learning, as if it were a directly observed pattern. The old hypothesis will then enter the STM

queue.

STM has a further role for managing how information for problem solving is learnt. The

system will naturally encounter information about problem states and solution states. In the

example domain below, each of these states is a diagrammatic representation, and during

training the model is shown a diagram for the problem and a diagram for its solution. When

STM contains separate chunks for a problem and a solution diagram, then an association

between these two chunks is created in the discrimination network, known as an equivalence

link. The next section describes how these links are used for problem solving.

2.4 Problem solving with CHREST+

The eye’s limited field of view necessarily means that the chunks learnt by CHREST+ will

be  variously  sized  sub-elements  of  the  perceived  object.  The  learning  mechanisms  for

forming the discrimination network tend to place these chunks into a hierarchy, with smaller

chunks near the root of the network, and larger chunks further away, where more test links

must be traversed to reach them. Problem solving with CHREST+ begins by decomposing

the  problem  into  chunks,  and  creating  a  solution  for  each  chunk  independently  (this

possibility  is  an  important  requirement  for  the  generalisation  of  information  learnt  by

CHREST+). 

Recognising a chunk in the given problem may require more than one eye fixation before

attempting to construct a solution for it. Hence the model, after each eye fixation, considers

the new chunk formed from combining the eye fixation with the previous hypothesis (i.e. the

current  largest  chunk  so  far  recognised).  The  combined  pattern  is  searched  for  in  the

discrimination  network:  if  this  combined  pattern  is  not  the  image  of  some  node  in  the

network, then it is unfamiliar to the system. The model then constructs the partial solution

using  the  previous  hypothesis,  which  was  a  recognised  chunk.  After  which  the  model

proceeds with the chunk from the current eye fixation as the new hypothesis from which to

look for a further recognisable chunk.

Chunks are used for constructing steps in the solution. This is done directly if they are linked

to a second chunk by an equivalence link; this second chunk is used to provide the set of
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steps to include in the solution. If not, the hierarchy of the network is utilised to retrieve a

solution for a subset of the chunk, by looking at its parent chunks in the network to see if

they have equivalence links. In this manner, the model attempts to solve a given problem

based on its decomposition into perceptual chunks. The actual steps taken by the model in

solving each chunk depends on the domain; we describe one example in the next section.

3 COMPUTING UNKNOWN QUANTITIES IN ELECTRIC CIRCUITS

In order to evaluate the effectiveness of a problem-solving model which learns perceptual

chunks, it must be tested in a domain where such chunks are the key to successful learning.

We have chosen the task of  computing unknown quantities  in  electric  circuits  using the

diagrammatic representation known as AVOW (Amps Volts Ohms Watts) diagrams, which

represent  electric  circuits  and  the  domain  laws  of  electricity  in  terms  of  diagrams  and

constraints in their composition. AVOW diagrams are described in Cheng (1999), and Figure

2 provides an overview. Essentially, each resistor in an electric circuit is represented as a

separate  AVOW  box;  the  dimensions  of  the  box  are  scaled  to  represent  the  indicated

quantities. Composition of individual boxes is used to represent a circuit of several resistors;

the  rules  for  composition  preserve  the  underlying  physical  laws  of  electric  circuits.  In

working with this representation, subjects and the model must first produce a scaled AVOW

diagram using the dimensions  for  the provided quantities;  the constraints  in the diagram

ensure all the rules of electricity are followed, and so the subject can ‘read off’ the value of

any unknown quantity simply by measuring the appropriate dimension. This section contains

an overview of the results from one experiment on human subjects, investigating their use of

perceptual chunks; more detailed analyses may be found in Cheng (1998; 1999a) and Lane,

Cheng  and  Gobet  (submitted).  Understanding  how  humans  learn  using  these  kinds  of
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representations  is  an  important  element  in  the  design  of  effective  educational  material

(Cheng, 1999b).
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3.1 Human subjects

Six subjects1 were asked to construct AVOW diagrams using an electronic sketchpad; the

computer retains records of each drawing and measuring action, and various timings. After

an  initial  15  minutes’ training  session  in  using  the  electronic  sketchpad,  subjects  were

presented with a graded sequence of problems, working up to relatively complex circuits

containing  up  to  twelve  resistors.  After  each  circuit  was  attempted,  the  correct  AVOW

diagram and  solution  were  shown to  the  subjects.  Our  interest  here  is  whether,  for  the

complex circuits, subjects showed any evidence of ‘chunking’. To test for this, we analysed

the timing and sequences of drawing operations on the complex circuit shown in Figure 3(a),

with its solution in Figure 3(b). Figure 4 contains graphs for three of the subjects. The graphs

plot  the  reflection  times  for  each  action  in  the  subjects’ solution  of  the  test  problem:

reflection time is the time between the end of one action and the start of the next. As the

graphs show, the subjects produce their solutions in stages, with peaks in the reflection times

followed by a succession of more rapid actions. The stages completed by the six subjects

show a roughly similar pattern, with similar parts of the circuit being completed within each

stage.  We interpret  these  results  as  supporting  the  role  of  perceptual  chunks in  problem

solving. 

1 The authors would like to thank Lucy Copeland for conducting this study.
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Figure 3 : The test circuit, its solution and the predicted chunks from CHREST+

(c) Illustrated are the    chunks used by CHREST+ in solving the test circuit (for clarity, labels and diagonals are not shown).
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3.2 CHREST+

To apply CHREST+ to this domain, two sets of representations and two sets of mechanisms

are required. The two mechanisms are for:  input, converting what is seen into an internal

representation; and  output, converting an internal representation into an external one. Two

input  representations  are  required:  one  for  the  circuit  diagrams  based  on  the  input

mechanism, and one for the AVOW diagrams, based on the input and output mechanisms.2

Based  on  observations  of  human  subjects,  and  the  principles  described  earlier  for

representing perceptual chunks, the internal representations for circuit and AVOW diagrams

captures their topological form only; circuits are represented as interconnected resistors and

AVOW diagrams as aligned boxes. The output mechanism for drawing an AVOW diagram

must incorporate the quantitative information of the appropriate line length, and thus, for

each unconstrained line, the system attempts to locate the required quantity from the circuit

diagram or, if this is not present, simply draws a line of arbitrary length.

We tested CHREST+ on the same sequence of problems as in the study on humans; for each

problem, CHREST+ was required to produce an AVOW diagram, and was then given the

correct diagram for training. As CHREST+ retrieves perceptual chunks from its network, the

model reports back during solution which chunks it had identified and was using. Also, as

intended drawing operations  become constrained during  solution,  they  are  output  by the

model in rapid succession; these two forms of feedback enable us to compare the chunking

performance of the model with that of the subjects. The chunks retrieved by the model are

shown in Figure 3(c); the correspondence of the chunks with those of the human subjects is

shown by the numbering in Figure 4. The total amount of information learnt during the above

test may be estimated from the size of discrimination network: 72 chunks were learnt (42

circuit and 30 AVOW), with 11 equivalence links.

 

2 The model only computes AVOW diagrams from circuits; the reverse task would require an additional output

mechanism for drawing circuits.

– 8 –



Peter Lane, Fernand Gobet, and Peter Cheng Predicting Perceptual Chunks

– 9 –

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11

Time in seconds

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13

Time in seconds



0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 1 01 11 21 31 41 51 61 71 8 1 92 02 12 22 32 4

0

2

4

6

8

1 0

1 2

1 4

1 2 3 4 5 6 7 8 9 1 0 1 1

T i m e  i n  s e c o n d s

024681
0

1
2

1
4

1
6

1
8

2
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3

T
i

m
e

 
i

n
 

s
e

c
o

n
d

s

Peter Lane, Fernand Gobet, and Peter Cheng Predicting Perceptual Chunks

– 10 –

(a) CP

      LT        LA        HP    VP        VL        LT      HL      LA      LA          LT      HL      HL        VL      VL      VL          LT    HL      LA      LA      LA      LA      LA        LA        LA

Bounding box

(c) EF

          LA        BX        BX        BX    BX        BX      BX      BX        BX        BX      BX      

Figure 4 : The performance of three subjects when solving the test problem. Under the graphs, information is given on the specific drawing action performed, the stage of the diagram just prior to the peaks, and the correspondence with the chunks predicted by CHREST+. Note: this data is for individual subjects, and is not aggregated.
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4 DISCUSSION OF LEARNING MECHANISMS

The  previous  sections  have  described  CHREST+,  a  computational  model  which  learns

perceptual  chunks  to  solve  problems  using  a  diagrammatic  representation.  Although

CHREST+ is currently restricted in the kinds of problem it can tackle, it is worth making a

brief comparison of its learning mechanisms with those in the more established models of

ACT-R (Anderson & Lebiere, 1998) and Soar (Laird, Rosenbloom & Newell, 1986). Table 1

contains a summary of the types of knowledge and some aspects of the learning mechanisms

in these three models. 

CHREST+ ACT-R Soar
Declarative Knowledge Yes Yes No
Procedural Knowledge No Yes Yes
When  Does  Learning
Occur?

Continuous learning New rules through new
experience; tuning

statistics continuously

Chunking of solution to
an impasse

Form  for  Learnt
Knowledge

A hierarchy of
perceptual chunks

Production-rules
grouped by problem

space. 

Production-rules
grouped by problem

space.
Retrieval of Knowledge Serial match and serial

use of chunks
Parallel match but serial

fire of rules
Parallel match and
parallel fire of rules

Interaction  of  Stored
Knowledge

Seriality imposed by
hierarchy

Statistics are used for
conflict resolution

between matching rules

Operators suggested by
rules are ‘voted for’ by

other rules
Generalisation Presence of similar (or

ancestor) chunks
Variabilisation and use

of dependencies
Variabilisation only of

relevant features

Table 1 : Summary of three cognitive architectures: CHREST+, ACT-R and Soar.

CHREST+  currently  only  uses  declarative  knowledge,  although  production-rule-type

procedural knowledge may be included in the same framework (Gobet, 1996). Of greater

interest is how the hierarchical arrangement of information in CHREST+ differs from the

essentially unstructured set of production rules, within each problem space, used by ACT-R

and Soar. This difference means that, instead of the parallel match of all rules required by

ACT-R and Soar,  CHREST+ can use  serial  procedures  for  knowledge retrieval  and use,

although  several  chunks  can  be  considered  simultaneously  in  STM.  This  emphasis  on

seriality in CHREST+ is derived from EPAM and its presence in Simon’s ideas on cognition

in general (e.g. Simon, 1981). Further, because CHREST+ only retrieves a single chunk, all

the  interactions  between  chunks  are  taken  care  of  by  the  discrimination  network.  In

comparison, ACT-R uses a set of statistics learnt for each rule to drive a conflict-resolution

strategy, whereas Soar allows all rules to ‘fire’ and suggest possible operators, which are then

‘voted  for’  by  further  rules.  This  simplicity  allows  CHREST+  to  adopt  a  rapid  and

continuous process of learning. Due to the added cost of computing interactions between

rules or operators  in ACT-R and Soar,  these models learn new rules in response to well

specified situations during the problem solving process; CHREST+ learns in response to the
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direct  input  patterns  with the structure of  connections  within its  network determining its

knowledge  for  problem  solving.  Finally,  the  generalisation  of  information  learnt  by

CHREST+ is based on the quality of the perceptual decomposition; that in ACT-R and Soar

relies additionally on the power of variabilisation and specific mechanisms for selecting the

relevant conditions from which to create a production.

However, the most important distinction between CHREST+ and both ACT-R and Soar is not

so much the lack of production-rules, but instead that training instances are not substantially

processed; the only processing that occurs is a decomposition of each instance into a number

of perceptual chunks, an approach similar to lazy learning (e.g. Aha, 1997). The value of this

decomposition in rapid recall and the recognition of instances from a human’s domain of

expertise has been demonstrated in the non-problem-solving version of CHREST (Gobet &

Simon,  in  press).  Our  extension  of  this  mechanism to  actual  problem solving  offers  an

explanation of how experts can rapidly solve problems from their domain of expertise, and

also  offers  a  solution  to  the  knowledge  proliferation  problem  which  does  not  involve

parallelism (Lane, Cheng & Gobet, 1999).
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