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Abstract

This paper presents work on a computer model of how humans learn to solve problems with

diagrams. Although earlier work has discussed the kinds of representations which experts use

when solving problems, not much work has been done on how these representations may be

learned.  We  focus  on  a  particular  problem  solving  domain  and  describe  a  specific

diagrammatic representation for it. We define a novel computer model which is able to use

the perceptual information available in typical problems in this domain to learn appropriate

representations to assist the problem solving process. Specifically, we consider the different

strategies used by subjects in constructing a diagrammatic representation of an electric circuit

known as  an AVOW diagram.  Experiments  offer  evidence that  subjects  learn perceptual

chunks about the domain, and also show how subjects exploit the external representation. Of

primary importance for a more comprehensive model is how the problem solver creates an

appropriate internal representation of the domain. We use a model for Long-Term Memory

based upon an extended version of EPAM, which can handle multiple representations. The

model as currently implemented retrieves visuo-spatial  information using a directable eye

and obeys the constraints of Short-Term Memory to learn perceptual chunks about circuits

and their associated AVOW diagrams.
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1 INTRODUCTION

A number of studies have shown that humans learn to solve problems more efficiently when

the problem is in an appropriate diagrammatic representation. In order to better understand

the kinds of information learnt from diagrams and also how to create better representations

for different tasks, we aim to construct a computer model which simulates this ability. For

this model to be effective, certain features should be present in the problem solving domain.

For instance, the domain should require the use of visuo-spatial information and show a rich

variety of behaviour from different subjects. In order to assess the development of a subject’s

ability,  an effective grading system should exist  and timing and response data should be

measurable. For a rapid turnover in experiments, an observable development in the subject’s

ability should require a training time of the order of hours and not years. In this paper we

describe  part  of  an  on-going  project  which  aims  to  develop  a  simulation  of  the  use  of

diagrammatic  representations  in  problem  solving  using  AVOW  diagrams,  a  novel

representation  for  electric  circuits.  AVOW diagrams  are  highly  suited  for  the  study  of

problem  solving  with  diagrams  as  they  are  designed  to  be  a  good  diagrammatic

representation for solving problems relating to circuits. We begin with a brief overview of the

main components in the computational model to be developed for the simulations.

The general form of a model of problem solving with diagrams has been well established by

earlier  work  on  reasoning  and  inferencing  with  external  representations  (for  example,

Tabachneck-Schijf, Leonardo & Simon, 1997). Firstly, there is the external representation

itself, which in our case is a (computer representation of a) sheet of paper containing line

drawings of the circuit and AVOW diagrams. Secondly, if the system is to interact with its

external representation, it also requires some input and output devices. In our case these are a

directable eye,  for retrieving information from various  parts  of the paper,  and a pen, for

adding information to the paper. Thirdly, to match the cognitive processes of humans, there

should be a Short-Term Memory (STM). The STM may contain a number of components,

such  as:  a  perceptual  memory,  for  visuo-spatial  information;  a   verbal  memory,  for

propositional or sentential  information; and also a memory for information relating to the

current goals of the system. Finally, the system must possess a Long-Term Memory (LTM),

which also may have different components, the counterparts to those in STM.

However, this earlier work has not addressed the question of learning information about these

external  representations  in  order  to  support  a  growing  expertise  in  problem  solving.

Accordingly, we  focus in this paper on how the long-term perceptual memory is acquired

whilst  learning to construct AVOW representations  of electric circuits.  We show that the

observed behaviour of human subjects in constructing AVOW diagrams is consistent with

the perceptual chunking theory (Chase & Simon, 1973; Egan & Schwartz, 1979; Koedinger
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& Anderson, 1990). One of the better models for this memory is that of the EPAM-chunking

theory. Our current  implementation of these ideas uses a graphical computer environment

with  a  directable  eye  for  retrieving  diagrammatic  information  from  circuit  and  AVOW

diagrams. A visual STM is used in conjunction with an extended form of EPAM to acquire

perceptual information about multiple external representations, i.e. the circuit and AVOW

diagrams.  Finally,  we  show  how  this  memory  can  be  used  as  a  component  in  a  more

comprehensive computer model of how humans learn to solve problems with diagrams.

2 REPRESENTING CIRCUITS AS AVOW DIAGRAMS

In  this  paper  we  are  interested  in  how  subjects  learn  to  use  a  novel  diagrammatic

representation for electric circuits, AVOW (Amps, Volts, Ohms, Watts) diagrams (Cheng,

1998,  submitted).  The advantages  of  diagrams as  representations  stem largely from their

indexing  of  information  in  a  manner  which  supports  useful  and  efficient  computational

processes (Larkin & Simon, 1987; Tabachneck-Schijf, Leonardo & Simon, 1997). AVOW

diagrams  are  designed  so  that  these  computational  properties  of  diagrams  aid  problem

solving with electric circuits, and they are one example of a range of such representations for

problem solving and learning in science known as Law Encoding Diagrams (Cheng, 1996).

An AVOW diagram is composed of AVOW boxes, each AVOW box being a diagrammatic

representation  of  a  resistor  (or  load)  within  an  electric  circuit,  as  shown in  Figure  1.  A

resistor has the properties of voltage (V), current (I) and resistance (r). These properties are

represented in the AVOW box by scaling the indicated dimension, voltage being the height,

current the width, and resistance the gradient of the box’s diagonal. It can be seen that the

gradient  encapsulates Ohm’s law, and also that  the area of the box represents the power

(P=I*V) expended in the resistor.
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The AVOW boxes are combined into an AVOW diagram for an entire circuit using simple

rules of composition. In order to represent two series resistors, two AVOW boxes are aligned

vertically,  as  shown  in  Figure  2(a).  Similarly,  two  parallel  resistors  are  represented  by

aligning the boxes horizontally, as shown in Figure 2(b). The alignment rules encapsulate

Kirchoff’s Laws which govern the flow of current and distribution of potential differences in

electric circuits. For the completed AVOW diagram to be a well-formed representation of the

circuit, it must be a rectangle completely filled with AVOW boxes with no overlap or gaps.

This requirement captures an important abstraction used in circuit analysis: a collection of

resistors in a circuit can be regarded as equivalent to a single resistor, and formulae exist to

compute this single resistor’s resistance from that of its components. In the same way, the

composite AVOW diagram is also an AVOW box, containing all the information for this

equivalent  single resistor.  Just  as with the single AVOW box, the resistance of the total

AVOW  diagram  can  be  found  by  measuring  the  gradient  of  the  total  rectangle.  The

geometrical nature of this constraint on the final AVOW diagram and the rules for composing

separate  AVOW  boxes  mean  that  it  is  very  natural  for  humans  to  work  within  this

representation,  a  fact  which  has  important  pedagogical  implications.  For  the  purposes  of

constructing  a computer  model,  the geometrical  nature of this  knowledge means that  the

long-term memory can be assumed to be perceptual.

3 CONSTRUCTING AVOW DIAGRAMS

The construction of an AVOW diagram for a given circuit requires the subject to obey two

sets of constraints simultaneously: the first is to form an accurate representation of the circuit,

and the second is to construct a well-formed AVOW diagram.  The geometric and intuitive

nature of these constraints  lead to certain computational  benefits  when working with this

diagrammatic representation. For instance, the compositional rules for AVOW boxes mean

that the size of a box will be constrained by any neighbouring boxes, and so not require

computing from the circuit diagram. This also means that each problem solver can adopt a

different construction strategy, depending on which of these constraints is used at any time:

either information is explicitly taken from the circuit diagram, or else the evolving AVOW

diagram itself is used to constrain the construction process. In consequence, a rich variety of

strategies is observed in human subjects, even with relatively simple problems.

We illustrate this by describing the construction of an AVOW diagram for a simple circuit by

an ideal problem solver and some human subjects. We then discuss how a computer model,

based on earlier  work with models of perceptual chunking, can be developed to simulate

these different problem-solving strategies.

3.1 The Ideal Problem Solver
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An ideal problem solver is one for which no resource constraints apply, so that the solver can

extract  and  manipulate  whatever  information  is  required  for  solving  the  problem  of

constructing an AVOW diagram from a given circuit diagram. A typical circuit is that shown

in Figure 3(a) which contains three resistors. In order to construct the AVOW diagram, three

AVOW boxes must be drawn, each requiring its dimensions (height, width, gradient) and

position in the diagram to be determined. The ideal problem solver first calculates, for each

resistor, the amount of voltage drop across it and the amount of current flow through it. This

can be done in a number of ways, but all use equivalent  applications of Ohm’s law and

formulae for parallel and series resistors. The position of each box must then be determined

to satisfy the compositional  rules:  the AVOW boxes for the upper two resistors must  be

placed side-by-side on top of the lower resistor’s AVOW box. In our implementation of an

ideal problem solver, an AVOW diagram such as that in Figure 3(b) is constructed.

3.2 Human Subjects

A number of subjects have been trained in our laboratory (Cheng, submitted) to construct

AVOW diagrams from circuit diagrams. From such studies we can observe how different

subjects use different strategies whilst solving the same problem. In Figure 4 we illustrate

this variety by showing the separate steps taken by three subjects in constructing an AVOW

diagram for the circuit illustrated in Figure 3(a).

The subject (S15) in Figure 4(a) begins by drawing the AVOW box for one of the resistors in

the diagram; most often subjects start with the  top-left one. Because the only knowledge

about the resistor immediately available is that its resistance is 1 ohm, S15 draws a square

AVOW box. Next, S15 applies the same reasoning to the adjacent resistor, but this time,

because the two resistors are in parallel, the AVOW boxes are aligned horizontally. Finally,

S15 can draw the third resistor, an AVOW box which is constrained to be aligned with the
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Figure 4 : Solutions by three subjects for the circuit in Figure 3(a). 

Each set of diagrams shows the separate steps in the construction of the solution.
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lower edge of the previous two boxes, and also a square, because its resistance is 1 ohm.

Once the AVOW diagram is complete, S15 can use a ruler (or a background grid) to find the

quantities in the diagram; the total height of the AVOW box represents 12V, and therefore,

by measuring and rescaling, the rest of the quantities in the circuit can be obtained.

The second subject (SP), shown in Figure 4(b), exhibits a similar pattern but begins by only

drawing diagonal lines for the resistance of each of the three resistors. These lines constrain

the shape of the entire AVOW diagram, and the final step is  to fill  in the implicit  lines,

completing the diagram.

Radically  different  is  the  progress  of  the third  subject  (S11),  shown in  Figure 4(c).  S11

begins by drawing a single vertical  line to represent the voltage across the entire circuit,

making this line a multiple of 12 grid units. The next piece of information to be filled in is

the current flow through the left-hand of the top two resistors. This is followed by a line for

the resistance of the lower resistor. At this point S11 now has a fully constrained diagram,

and so proceeds methodically to complete it.

3.3 Modelling the Human Behaviour

A number of differences can be observed in the problem-solving strategies of the various

solvers, ideal and human. Firstly, there is a large difference between the ideal and the human

solvers in that, for the latter, the sheet of paper is used as a store for known information, i.e.

the paper is used as an external representation in order to reduce demands on STM. Secondly,

it is evident that human subjects display a great variety in their approach to a given problem.

There are at least two distinct dimensions explaining this difference: first, subjects differ in

their  level  of  experience  with  the  domain;  second,  subjects  differ  individually  in  the

sequences of actions used to construct the AVOW diagram. The different strategies used by

the subjects S15 and S11, illustrated in Figures 4(a) and 4(c) respectively, may be explained

with the  theory of  perceptual  chunking (Chase & Simon,  1973;  Koedinger  & Anderson,

1990). For instance, S15 draws components of the circuit at the single resistor level, whereas

S11 begins by drawing a line representing the voltage for the entire circuit and proceeds by

filling out key lines to constrain the diagram. Individual differences can be seen in how SP

and S11 fill out critical information to constrain the full AVOW diagram before completing

the details, whereas S15 carefully completes each AVOW box before moving on to the next.

Taken together, this suggests that subjects can form an internal representation for the whole

circuit diagram, and this is in the form of a mental impression of how the completed AVOW

diagram should look.

The basic elements for modelling such behaviour are an eye, a STM and an appropriate long-

term  perceptual  memory.  We  restrict  our  attention  in  this  paper  to  the  acquisition  of

appropriate perceptual information. We begin by discussing the EPAM-chunking theory for
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perceptual memory, and later show how its learning operations and the use of an appropriate

STM and directable eye model the acquisition of chunks of perceptual information.

4 THE EPAM-CHUNKING THEORY OF MEMORY

EPAM (Elementary Perceiver and Memoriser) is a well-known computer model of a wide

and growing range of memory tasks. The basic ideas behind EPAM include mechanisms for

encoding  chunks  of  information  into  long-term  memory  (LTM)  by  constructing  a

discrimination network. The EPAM model has been used to simulate the  learning of verbal

material  (Feigenbaum  &  Simon,  1962,  1984)  and  expert  digit-span  memory  (Richman,

Staszewski & Simon, 1995). EPAM has been expanded to use visuo-spatial information, as

in MAPP (Simon & Gilmartin,  1973).  CHREST (Gobet,  1998)  is  a  further  extension  of

EPAM which includes the ability to learn templates and semantic links between nodes. We

describe next the learning mechanisms used to construct a discrimination network, which are

common to all EPAM variants, and we show how CHREST needs extending to be a model of

problem solving. In a later section we describe such an extension of CHREST, where nodes

can be linked to represent equivalences between multiple representations.

EPAM The EPAM model organises memory into a collection of chunks, where each chunk

is a meaningful group of basic elements. For example, in chess, the basic elements are the

pieces and their locations; the chunks are collections of pieces, such as a king-side pawn

formation. These chunks are developed as the EPAM discrimination network grows through

the processes of  discrimination and  familiarisation. Essentially,  each node of the network

holds a chunk of information about an object in the world. The nodes are interconnected by

links into a network, with each link representing the result of applying a test to the object.

When trying to recognise an object, the tests are applied beginning from the root node, and

the links are followed until no further test can be applied. At the node reached, if the stored

chunk matches that of the object then familiarisation occurs, in which the chunk’s resolution

is increased by adding more details of the features in that object. If the current object and the

chunk at the node reached differ in some feature, then discrimination occurs, which adds a

new node and a new link based on the mis-matched feature. Therefore, with discrimination,

new nodes are added to the discrimination network; with familiarisation, the resolution of

chunks at those nodes is increased.

CHREST The experiments in the recall of chess positions reported in Gobet (1998) show

that CHREST captures all the main features of perceptual memory gathered in experiments

with human subjects; the difference between expert and novice behaviour is explained by the

size of the discrimination network, i.e. the number of stored chunks of information. However,

CHREST as it stands is not a model of problem-solving behaviour. For instance, CHREST

does not play chess as it lacks a mechanism for handling the construction of game trees and
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the interaction of various chunks. Although CHUMP (Gobet & Jansen, 1994), a program

based on CHREST, does play chess, it  does so purely by pattern recognition and without

search. The important ability required in complex problem solving, which CHREST lacks, is

the  ability  to  form a  plan.  Accordingly,  we adapt  CHREST to  handle  multiple  external

representations,  and apply  it  to  acquiring perceptual  chunks of  electric  circuits  and their

associated AVOW diagrams. The advantage of this domain is that a visual image of the target

diagram can  be  used  as  a  plan  for  problem solving,  which  is  of  the  same type  as  the

perceptual  memory  being  acquired,  whereas  in  chess,  plans  require  a  separate  type  of

knowledge. In the remainder of this paper we describe some of the details of our current

implementation of this model, and also show how our approach forms the basis of a larger

model of problem-solving behaviour.

5 CREATING INTERNAL REPRESENTATIONS

Several  components  are  required  in  a  simulation  of  learning  to  solve  problems  using

diagrams. Of primary importance is the internal representation of the domain created by the

problem solver; the difficulty is, because this perceptual memory is acquired implicitly whilst

the subject is observing the diagrams, the exact form of the memory can only be known

indirectly.  We argue here that  this  representation is  created through an interaction of the

information acquired by the eye, the structure of the internal STM and LTM mechanisms,

and the demands of the problem-solving process. 

In  the  next  four  sections  we discuss  our  current  model  for  the  creation  of  this  internal

representation. We begin with a discussion of the level of visual information required from

the eye, and how this is built up into perceptual chunks for entire diagrams using EPAM and

a finite STM. Our domain for problem solving requires associations to be formed between

two distinct external representations, circuit and AVOW diagrams. We describe an extended

EPAM model for handling multiple representations, one of the advantages of which is that an

inheritance  structure  is  formed  for  the  perceptual  chunks.  This  structure  can  be  used  to

generalise information about simpler diagrams to more complex examples. Also, because the

memory is acquired dynamically, the precise form of the network will vary depending on the

order of presentation of the training examples. We briefly discuss the prospects for the next

stage of  this  project,  an integrated  model  of  problem solving based on this  memory for

multiple representations. 

5.1 Retrieval of Diagrammatic Information

In order  to  work with  diagrams,  the information  acquired from the eye must  contain  an

appropriate  level  of diagrammatic  information;  too abstract a representation will  lose the

benefits of working with diagrams, and too fine a level of detail will involve the model in an

inappropriate  amount  of  low-level  simulation.  Therefore,  although  our  model  contains  a
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directable eye, it is not our intention to simulate the visual process beginning from a low-

level image at the retina. Instead, an appropriate level of visual input for this project is the

diagrammatic information contained within the field of view. 

The basic primitives we use allow for identification of the separate rectangles and shapes in

the diagrams, and the relative positioning, alignment and connections between them. These

primitives are a subset of those described in, for example, Lindsay (1988). Therefore, when

looking at part of a circuit diagram, the information retrieved will describe the resistors, their

interconnections and their relative positions within the visual field; similarly for the AVOW

diagram, the separate AVOW boxes and adjacency relationships will be described for those

boxes within the current field of view. This approach is further justified by the observation

that human subjects have no difficulty in parsing a diagram, so that a circuit is readily seen as

a collection of connected resistors.

5.2 Acquiring Large Perceptual Chunks

Small chunks are those of the order of the size of the visual field. These can be learnt and

recognised by passing the information retrieved by the eye directly to the perceptual memory

(LTM),  where  the  standard  familiarisation/discrimination  process  will  apply.  In  order  to

acquire  chunks for  visual  images  which extend beyond the visual  field,  an interaction  is

needed between the eye, STM and LTM. The procedure here is the same as that used in

CHREST (Gobet, 1998). The visual STM contains a queue of pointers to the last chunks

observed. One of these chunks has a special status, and is known as the ‘hypothesis’, the

largest chunk currently considered. Information received from the visual field is passed to the

LTM and familiarisation/discrimination  will  occur if  appropriate.  A pointer  to  the chunk

indexed by the current visual object is placed in the STM queue. The hypothesis chunk is

then combined with the most recent chunk stored in STM, and this new chunk will be used

for further learning in LTM.

This  combination  process  depends  upon  two  assumptions:  firstly,  that  the  two  chunks

combined will be overlaid without duplication, and secondly that the image of the combined

chunks will be the same if the chunks were combined in a different order. This latter arises if

the visual chunks are retrieved by a different sequence of eye movements.  Each of these

assumptions is handled in our current implementation by retaining the identity of the separate

elements  in  the  visual  field,  a  sorting  process  on  these  elements  then  removes  the

duplications and ensures all chunks with the same elements are stored in an identical fashion.

5.3 Combining Multiple Representations

In  order  to  work  with  more  than  one  representation,  a  method  is  needed  for  indexing

information  in  different  parts  of  a  discrimination  network  other  than  with  the  links

representing tests. Gobet (1996) describes such a method, showing how production rules and
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semantic networks can be learnt by combining multiple networks. All that is required is the

use of additional links, which can be used when traversing the network. This method can be

used to combine chunks for multiple representations. We assume, for simplicity, that a high-

level test in the discrimination network separates out the two representations; although this is

not strictly necessary, as all that is required is for the chunk at each node to be either that of

an electric circuit or that of an AVOW diagram, and this condition should arise automatically

as the visual procedure extracts information from the diagrams. Figure 5 depicts part of the

network learned from the circuits in Figures 1-3 (the full network contains around 70 nodes):

the left-hand part of the network represents information about electric circuits, and the right-

hand  information  about  AVOW  diagrams.  The  relationship  between  these  two

representations can be shown by an equivalence link which connects a node from the electric

circuit network with its equivalent AVOW representation in the AVOW diagram network.

The dotted links in Figure 5 show examples of this.

In  order to  construct  an equivalence link,  the two separate  representations  must  be fully

learned. This condition is easily identified during the recognition of a visual chunk; if no

discrimination  or familiarisation  occurs at  the node reached during recognition,  then that

node has fully learned the current chunk. We imagine now that the system is presented with a

circuit, recognises it, and so places in STM a pointer to a fully learned chunk representing

that circuit. Turning now to the AVOW diagram, no training during its recognition will occur

if a fully learned representation for the AVOW diagram exists. Because of this, the pointer to

the node representing the circuit diagram will not be displaced from STM. Once the AVOW

diagram has also been fully recognised, an equivalence link can be formed between the two

nodes.

5.4 Constructing a Solution
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Figure 5 : Multiple discrimination networks, showing two equivalence links and the inheritance structure.

The chunks at some of the nodes are illustrated.
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The perceptual memory described so far has some useful properties for the larger system we

are developing for solving problems using diagrams. Firstly, the equivalence links within the

memory can be used to retrieve plans to guide the construction of a solution. For example,

once  a  system  recognises  a  circuit,  such  as  that  in  Figure  3(a),  its  equivalent  AVOW

representation can be retrieved from memory. This representation can then be instantiated by

drawing lines of the appropriate length and layout on the sheet of paper. 

The  second  useful  property  lies  in  the  type  of  generalisations  possible  in  the  LTM

discrimination network. Because this memory uses tests to discriminate between different

objects, the nodes in the network are organised into an inheritance structure for diagrams

based on their  perceptual  similarity.  This structure can be used to  generalise information

about  simpler  diagrams  to  more  complex  examples.  For  example,  when  recognising  a

diagram in one representation (a circuit), an equivalent diagram in another representation (its

AVOW diagram) should be indexed. If, however, a node is reached where no equivalence

links are present, it is possible to consider equivalence links from the node’s ancestors. For

example,  the parent node for the circuit  in Figure 3(a) might  contain a chunk for a sub-

component of the whole circuit; in Figure 5, a chunk for two parallel resistors is its parent.

Therefore, where no equivalent AVOW representation has been learnt for a given circuit,

representations of its sub-components can be used to create a partial AVOW diagram. The

diagrammatic  constraints  imposed by the AVOW representation  will  then help guide the

solver towards a correct representation for the total circuit. 

Finally,  the  dynamic  nature  of  learning  in  EPAM-type  models  means  that  individual

differences  in  perceptual  memory occur quite  naturally  due to  differences  in  the training

sequence. The separate system required to instantiate the visual plans will also provide scope

for individual differences, depending on the (acquired) heuristics and the data observed in the

circuit. These considerations show that the model we propose contains the required richness

and flexibility for modelling the different problem solving strategies observed in Figure 4.

6 CONCLUSION

This paper has described a project to simulate human subjects learning to solve problems

with diagrams; specifically, subjects must construct an AVOW diagram representation for a

given  electric  circuit.  This  project  uses  an  extended  version  of  the  CHREST  model  of

perceptual  memory  in  order  to  learn  equivalences  between  multiple  diagrammatic

representations. This model extends on earlier work by addressing the question of learning

information about external representations in order to support a growing expertise at problem

solving within our domain.

Our current implementation uses a graphical computer environment with a directable eye for

retrieving diagrammatic information from circuit and AVOW diagrams. The model builds up
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chunks of perceptual  information in  LTM, which appear of the right  kind to  explain the

behaviour  of  different  problem  solvers.  Also,  because  the  incremental  learning  used  by

EPAM can construct different networks depending on the order of the training data, this

model explains fairly directly how individual differences in problem-solving behaviour can

arise.  We have shown how this  model  for  long-term perceptual  memory can be used to

provide a  visual  plan to  guide the construction  of an AVOW diagram. This  project  will

continue by developing a drawing module by which the system can interact with its external

representation,  at which point we should have a computer model which can be trained to

solve problems using diagrams.
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