
Simple Synchrony Networks :
A New Connectionist Architecture Applied to Natural

Language Parsing

Submitted by Peter Lane to the University of Exeter as a thesis for the degree of Doctor of

Philosophy in April, 2000.

This thesis is available for Library use on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement.

Abstract:

This thesis develops a new implementation of Temporal Synchrony Variable Binding (TSVB) using

standard sigmoid activation units. TSVB is an extension to the standard connectionist framework

allowing a network to represent multiple entities by dividing time periods into separate phases. The

importance of TSVB is that TSVB units support the use of structured output representations. A

range of TSVB networks is created by adding these new TSVB units to the architecture of a Simple

Recurrent Network and developing a novel extension of the Backpropagation Through Time training

algorithm.

This thesis also develops two ideas for achieving the most effective learning from TSVB net-

works. The first idea is a restriction to the space of possible TSVB network architectures. Specif-

ically, TSVB networks contain two types of unit, pulsing and non-pulsing. The most effective

networks, known as Simple Synchrony Networks (SSNs), do not have links from pulsing to non-

pulsing units. The second idea removes a computational inefficiency in the basic definition of

TSVB networks by only computing the phases in a bounded queue, known as the short-term mem-

ory (STM). Mechanisms for managing the STM retain phases of use to the current problem, and

remove those that are irrelevant.

Experiments on two toy grammars test a range of TSVB networks for specific generalisations

across entities and constituent structure. Additionally, a number of SSNs (with a STM) are tested

on a more demanding application: the SSN is trained to output parse trees in response to samples

of natural language taken from newspaper reports. Through its use of appropriate generalisations

and a general learning algorithm, the SSN achieves good results in a field previously dominated by

specialised algorithms. This makes the SSN the first serious connectionist proposal for an alternative

to standard statistical approaches to natural language parsing.

1

Acknowledgements:

Grateful acknowledgements are due to my supervisor, Jamie Henderson, and my thesis committee,

Derek Partridge and Antony Galton, for helping me to complete this thesis. Also thanks to my

examiners, Stefan Wermter and Ajit Narayanan, for a number of suggestions which improved its

presentation and quality.

Thanks are also due to the Economic and Social Research Council (UK) as sponsor and the

University of Sussex as grantholder for providing the SUSANNE corpus used in the experiments on

natural language parsing in this thesis.

This research has been funded by the Engineering and Physical Sciences Research Council, UK.

2

Contents

1 Introduction 5

1.1 Comparing Machine Learning Algorithms . 5

1.2 Requirements for Learning Language . 8

1.2.1 Statistical learning . 9

1.2.2 Extending the basic connectionist network 10

1.3 Defining and Testing Simple Synchrony Networks 12

1.3.1 The Simple Synchrony Network . 12

1.3.2 Experiments in learning to parse . 14

1.4 The SSN in Context . 16

1.4.1 Qualitative comparisons . 16

1.4.2 Quantitative comparisons . 17

1.5 Thesis Overview . 18

2 Connectionist Networks 20

2.1 Networks for Learning Static Patterns . 21

2.1.1 Defining the network . 21

2.1.2 Training the network: Gradient descent 22

2.2 Networks for Learning Dynamic/Temporal Patterns 23

2.2.1 Time Delay Neural Networks . 24

2.2.2 Simple Recurrent Networks . 26

2.2.3 Comparison . 29

2.3 Networks for Learning About Entities/Structured Patterns 30

2.3.1 Structured representations . 31

2.3.2 Recursive Auto-Associative Memory . 34

2.3.3 Encoding networks . 35

2.3.4 Hebbian connectionist learning . 37

2.3.5 Temporal Synchrony Variable Binding (TSVB) 42

2.3.6 Comparison . 45

2.4 Conclusion . 46

3 Previous Work on Parsing 48

3.1 The Problem of Parsing . 49

3.2 Symbolic Parsing: PARSIFAL . 50

3.3 Statistical Learning: Probabilistic Context-Free Grammars 50

3.3.1 Context-free grammars . 51

3.3.2 Probabilistic context-free grammars . 52

3.3.3 Evaluation of parse trees . 53

3.3.4 Strengths and weaknesses . 54

3.4 Connectionist Language Learning: Recurrent Networks 55

3

3.4.1 Sentence roles, inference and selection 55

3.4.2 Toy grammars . 57

3.4.3 Natural language grammatical inference 60

3.4.4 Real natural language . 61

3.4.5 Holistic parsers . 62

3.4.6 Other approaches . 64

3.5 TSVB Parser Representations: NNEP . 65

3.6 Conclusions . 66

4 Trainable TSVB Connectionist Networks 68

4.1 Defining TSVB Networks . 69

4.1.1 Adding TSVB to connectionist units . 69

4.1.2 Training TSVB Networks . 72

4.1.3 TSVB network architectures . 75

4.1.4 Short-term memory and other variations 77

4.1.5 Representing structure with TSVB networks 81

4.2 Experiments on Specific Generalisations . 83

4.2.1 Learning generalisations across multiple entities 84

4.2.2 Learning generalisations across syntactic constituents 91

4.3 Conclusion: Defining the Simple Synchrony Network 94

5 Experiments in Learning to Parse Natural Language 96

5.1 Data for Parsing with the Simple Synchrony Network 96

5.1.1 The SUSANNE corpus . 97

5.1.2 Appropriate parse trees for learning . 100

5.1.3 The GPS output representation . 101

5.1.4 Conversion of the SUSANNE corpus . 103

5.1.5 Evaluation of the parser’s output . 108

5.2 Experimental Results . 110

5.2.1 Experiments with the STM-SSN network 110

5.2.2 Analysis of results . 112

5.2.3 Conclusion of experiments . 113

5.3 Conclusions . 117

6 Evaluation and Conclusions 118

6.1 Basic Results . 118

6.2 Evaluation and Comparisons . 119

6.2.1 Quantitative comparisons . 119

6.2.2 Qualitative comparisons . 120

6.2.3 Linguistic issues . 123

6.3 Further Work . 125

6.4 Conclusion . 127

A Experimental results 128

4

Chapter 1

Introduction

This thesis describes the development and empirical validation of a new machine learning algorithm.

This new algorithm, the Simple Synchrony Network, has been developed by combining two earlier

extensions to the basic connectionist network. Although the basic connectionist network has proved

an excellent algorithm for learning associations between input and output patterns over a wide range

of domains, various extensions have been proposed in order to extend the range of domains to which

such networks can be applied. The two extensions used here are the Simple Recurrent Network,

which learns about patterns across time, and Temporal Synchrony Variable Binding, which provides

a representation for multiple entities and generalisations across them.

The theoretical importance of the Simple Synchrony Network (SSN) lies in its combination of

these two earlier extensions, which makes the SSN an inherently powerful learning algorithm. Fur-

ther, the SSN is a novel implementation of Temporal Synchrony Variable Binding (TSVB) which

produces trainable networks but using fully general, distributed representations. These theoretical

ideas are tested in a series of experiments training the SSN to parse samples of natural language,

culminating in a set of experiments using a sample of real text. These latter experiments are signif-

icant in the connectionist learning literature for two reasons: firstly, because they use a corpus of

naturally occurring text (a subset of the Brown corpus); and secondly, because the SSN incremen-

tally outputs a parse tree representation for its input sentence, and consequently may be evaluated

in the same terms as parsers from the statistical language community.

This introduction chapter begins with a review of some basic questions in machine learning

relating to representations and learning procedures, discussed from the perspective of comparing

such algorithms. This attempts to show that requiring a good result and requiring a general approach

are different criteria, and lead to different algorithms. These ideas are then applied to the problem

of learning language, where shortcomings in the ability of connectionist networks are brought out

through a comparison with statistical approaches. This discussion places the SSN in context as a

machine learning algorithm and motivates some of the ideas behind its development. Next, this

chapter summarises the main findings and results of this thesis, and ends with an overview of the

following chapters.

1.1 Comparing Machine Learning Algorithms

Machine learning is an area of research falling within Artificial Intelligence (AI). Practitioners may

have a number of motivations for pursuing a specific project, but essentially research in AI aims to

uncover the general principles upon which any form of intelligent behaviour on given tasks must be

based. Winston [105] (Chapter 1) describes two central goals of AI research:

� One central goal of Artificial Intelligence is to make computers more useful.

5

� Another central goal is to understand the principles that make intelligence possible.

The first of these may be termed a results-based goal, and the second a principles-based goal.

Evaluating an algorithm with respect to the former entails applying a suitable measure of ‘use-

fulness’; the algorithm with the highest score will be the one to use. Understanding principles,

however, requires a more qualitative evaluation. For example, given a new algorithm which learns

to parse samples of natural language, a results-based evaluation would compare the generalisation

performance of the new algorithm with that of a previous one, and draw conclusions based on this

performance measure. Instead, a principles-based evaluation would consider the class of applica-

tions to which the algorithm may be subsequently applied with a similar degree of success; the wider

the class, the more general the principles captured by the algorithm. In order to determine which of

these evaluations is more important, the motivation for the algorithm’s design and use must be de-

termined: is it intended to be a specialist model for language learning, or instead a general machine

learning algorithm which can be effectively applied to language learning?

The field of machine learning is, to a large extent, concerned with the question of ‘performance

improvement’; a learning algorithm is given a representative sample of training data from some

domain, and its performance is evaluated on some previously unseen test data. From this definition

it is apparent that the primary evaluation of a machine learning algorithm is a results-based one.

However, it is also possible to ask of a learning algorithm, which has proven successful on a repre-

sentative sample of tasks of a specific type, whether it performs well on further tasks taken from that

type. For example, given an algorithm which has learnt to play a board game, e.g. checkers [88],

how well does it learn to play other games of that type, e.g. chess? Such an idea is behind the

Metagame challenge of Pell [76], where algorithms are tested against one another on novel games

from well-defined classes. The performance measure employed in this case is a principles-based

evaluation, and is used to separate the high-powered specialist algorithms from those of a more

general capability.

It is the interplay of these two evaluation measures which drives much of the variety found

in machine learning algorithms. There are three broad classes of such algorithms. The first class

is described as statistical learning, in which results on specific applications are the sole criteria

for evaluating an algorithm. The other two classes strive more for general principles applicable to

many domains, and are the algorithms known more widely under the heading of machine learning

algorithms. These last two classes are distinguished based on the internal representation used for

knowledge acquired from the training data: the symbolic, or high-level, and the connectionist, or

low-level, classes of algorithm. (However, this division is fairly arbitrary, as all three classes may

be considered to be examples of machine learning. Here the division is based on whether the

representational space is given to the algorithm or built up by it; this accords with the treatment in

Mitchell [73], though Kubat, Bratko and Mitchell [52] treat neural networks and genetic algorithms

as non-AI algorithms, and therefore in a class of their own.)

For the class of statistical learning algorithms, the first step in the learning process is to construct

a set of predictor variables. This set constitutes the model of the domain, and is constructed so as to

maximise the performance of the learner. For example, consider an algorithm learning to determine

whether an instance x is a member of a class C . If the probability that x 2 C depends on x2 then,

the statistician would argue, x2 should be in the predictor set, i.e. the set of variables used to predict

the output class.

“Relying on the system to work out that x2 should be included is unlikely to lead to as

good a rule; after all, the system has to separate this truth from the superfluous random

variation arising in the particular [training] set you have given it.” (Hand [34], Chapter

11)

6

(b)

Hidden

Output

Input Units

(a)

output

θ

input

x3

x1

x2 unit

Figure 1.1: The standard connectionist unit, and a feed-forward network.

Having constructed the predictor set, the learning process proceeds by working out the statistics

behind each variable’s contribution to the class of a given instance. These statistics are gathered di-

rectly from the training data, which is therefore assumed to be a representative sample of the data to

be modelled. Part of the variety in statistical learning algorithms derives from the different assump-

tions made about the interactions of the different predictor variables, e.g. the particular probability

distribution within the sample followed by the variable.

The second and third classes of machine learning algorithm differ from the statistical approach

in assuming that a common representation for knowledge will be applicable to a wide range of

possible applications. The algorithm will then use its specific learning procedure to construct, within

that representation, knowledge of how to predict the output class of a given instance. The emphasis

is therefore on a general procedure for constructing the predictor variables and statistics used in

the statistical approach. The intention is that a powerful enough procedure will indeed manage

to separate the correct knowledge from the training data over a broad class of domains. The two

classes of algorithm differ because they use a different level of representation in which to represent

the knowledge gained from the training data. Essentially, the second class uses a propositional

or symbolic level of representation, and the third class uses connectionist (or neural) networks.

(Other forms of representation exist, some closer to connectionist representations, some closer to

propositional, but these two are used for expository purposes, as they are at opposite ends of the

representational spectrum.)

The high-level, symbolic representation of knowledge is characterised by the use of proposi-

tional logic. For example, the proposition

9x:9y:red(x) ^ blue(y) ^ square(x) ^ circle(y)

can be used to represent a scene with two objects or entities – a red square and a blue circle. The

features present in the scene are named, and the entity to which they relate are indicated by variables.

The presence of the variables ‘x’ and ‘y’ enables the representation to unambiguously combine the

descriptions of two or more separate entities.

In direct contrast to this is the low-level, connectionist representation of knowledge, in which

it is assumed that learned information can be described in terms of numerical values assigned to

labelled units and their interconnections. Figure 1.1 illustrates (a) an individual connectionist unit,

and (b) a network of such units, where the input units are used to store input patterns, hidden units

hold intermediate representations, and the output units hold the computed output. Each unit in the

network can be affected by information stored on other units by receiving their activation values

via weighted links. Each unit can further affect other units via its output links. With a standard

7

connectionist network, each unit will apply a non-linear threshold function to the weighted sum of

its inputs.

Each of these two representations, propositional logic and connectionist networks, offers a flex-

ible and expressive language in which to represent functions mapping certain input data to a desired

output. However, because the two representations differ, they also differ on the generalisations from

learned information which each make possible for a learning system confronted with a novel item of

input data. For instance, in the symbolic system, it is quite straightforward to imagine that a system

which can represent ‘a red square and a blue circle’ will also be able to represent ‘a blue square

and a red circle’, because the only change to be made is which entity the ‘red’ or ‘blue’ variable

is predicated on. This ability, which Fodor and Pylyshyn [24] termed systematicity, is the ability

to work on the form of a representation, as well as its actual values. That is, because the system is

currently attributing entity ‘x’ with the colour value ‘red’, the system is also able to attribute entity

‘x’ with any other colour value, such as ‘blue’. Therefore, the generalisations which the symbolic

system can make to novel items of input data can be based on the structural form of the input and

learned data.

In contrast to this, the inherent generalisations afforded by the connectionist representation be-

gin at a much lower-level. Because each unit only computes with numbers, the information input

to a connectionist network can be represented in a multi-dimensional space of real numbers. This

space can be used to plot the outputs produced by the network. The generalisation behaviour is

seen if a test point falls between two input points in this multi-dimensional space. In such cases the

network tends to compute its output for the test point as an interpolation of the outputs at the two

earlier input points (e.g. see Huang & Lippmann [46]).

Once the representational space for these two classes of algorithm has been defined, next comes

the problem of exploring that space, during learning, in order to find an appropriate representation of

the training data. The particular procedure used by the algorithm is conditioned, to a large extent, by

the particular representation it is working on. However, Langley [59] and Mitchell [73] both argue

for similarities across the symbolic and connectionist schemes in this respect. Specifically, both

schemes rely on a procedure which explores their representational space for an appropriate mapping

between the input and output data used for training. A common method for guiding this process is

to measure the error made by the algorithm, which is used to alter the internal representation so as to

reduce that error. Thus, for symbolic systems, this hill-climbing approach is applied to the learning

of discrimination trees in ID3 [79], and for connectionist systems, the hill-climbing approach is

known as gradient descent, as used in the popular backpropagation training algorithm [85].

The discussion so far has focused on the dimension of specialisation–generality, although there

are almost as many ways to compare two algorithms as there are domains. For some domains, such

as medical expertise, the ability of the algorithm to explain its results to a doctor is important, which

makes a higher-level representational space mandatory. In other domains, such as real-time control

of instrumentation, the speed and robustness of operation would be more important. However, in

all cases where changes are made to an algorithm to enhance performance, it must be remembered

that: “small improvements under ‘laboratory conditions’ may not transfer to real application envi-

ronments” (Hand [34], Chapter 11). And so any changes proposed to a given algorithm in order for

it to achieve good performance in a given domain must be shown to be as general as possible.

1.2 Requirements for Learning Language

This thesis is about a new machine learning algorithm, the Simple Synchrony Network (SSN). The

SSN is a new type of connectionist network, formed by combining two specific extensions to the

basic connectionist network. These extensions are the Simple Recurrent Network, for learning about

8

patterns across time, and Temporal Synchrony Variable Binding (TSVB), for representing multiple

entities. The justification for forming this particular combination is based, partly, on the theoretical

goal of implementing a trainable TSVB connectionist network.

The target domain for much of the experimental work in this thesis will be the task of outputting

a parse tree representation for a given input sentence. TSVB networks are ideal for such experi-

ments, when compared with other connectionist architectures, because they enable the network to

incrementally output the amount of information necessary to build up this parse tree. In addition,

the extensions used in the SSN give the network the appropriate abilities to generalise across this

structured information. This is best shown by describing, briefly, Probabilistic Context-Free Gram-

mars, a popular statistical algorithm for learning to parse from samples of natural language, where

these abilities are most apparent.

1.2.1 Statistical learning

The Probabilistic Context-Free Grammar is one of the more popular statistical algorithms for learn-

ing to parse samples of natural language, especially effective where the input sentence is a string of

word-tags [11, 48]. The statistical parser is trained by creating a grammatical representation for its

training corpus, which is assumed to be a representative sample of the entire dataset. This repre-

sentation is created by taking each sentence in the training corpus and forming a grammatical rule

for generating that sentence. For example, the sentence ‘John loves Mary’ could be generated by

the rule ‘S! N V N’, with appropriate rules for instantiating nouns (N) and verbs (V). The rules

constitute a context-free grammar for the training data. These rules are then augmented by assigning

a probability to each rule, based on the number of occurrences of the rule within the training data,

thereby generating a Probabilistic Context-Free Grammar (PCFG) representation for the training

corpus. In parsing, the grammar is used to assign all possible parses to the input sentence, from

which the most probable is selected as the output parse. The output parse is then evaluated against

the target parse by comparing the proportion of correct constituents with the totals in the output and

target parses (yielding figures known as precision and recall, akin to the standard measures of errors

of commission and omission). Each constituent is counted as correct if it contains the correct set of

words and also has the correct constituent label.

The PCFG is a language-specialised example of a statistical algorithm for grammatical infer-

ence. The knowledge acquired by the PCFG can be considered under three headings. First, the

grammar acquires the relative probabilities of different words and constituents within the entire cor-

pus, i.e. statistical information is acquired about the elements in the representation. Second, the

grammar encodes grammatical rules for sequences of words, i.e. sentences. This means the gram-

mar learns about patterns across time. And finally, the grammar is compositional, meaning that

information is automatically generalised across syntactic positions. The grammar therefore refers

to multiple entities (words and constituents) and makes automatic generalisations across them; this

generalisation property was referred to above in the description of symbolic representations, and is

known as systematicity [24].

These three requirements are generic to all applications involving the inference of a grammar,

and are captured by the representation of the induced grammar as a PCFG. The PCFG’s specific su-

periority in language parsing is also in part due to the procedures used for acquiring the probabilities

and grammatical information, as well as the selection of the best output parse tree. The challenge

for connectionist language learning is to transfer these representational properties to a connection-

ist network, and rely on general learning procedures (such as backpropagation) to capture enough

information from a set of training data to provide an equivalent level of performance. In order to

achieve these representational properties, certain extensions are required to the basic connectionist

network.

9

Hidden

Context Input

Output

Figure 1.2: The Simple Recurrent Network.

1.2.2 Extending the basic connectionist network

As shown above, the ability to parse natural language requires three abilities: the acquisition of

statistics, the ability to learn about patterns across time and the ability to refer to multiple entities

and make generalisations across them. The first element, acquiring statistics, is already one of the

strengths of the standard connectionist network. Indeed, the connectionist network is a generalised

form of regression model, which is a standard statistical tool. The difference between the connec-

tionist and the statistical learning approaches is that in connectionist learning the network is started

with small initial weights, which make the hypothesised decision surface simple. As training pro-

gresses, some of the weights take on larger values, leading to more complex decision surfaces. This

means that the connectionist approach relies on a general procedure (gradient descent) to alter its

decision surface in order to learn an appropriate decision surface, whereas the statistical approaches

begin with a complex decision surface based on the set of given predictor variables.

In order to learn about patterns across time, the standard extension is to add context units. One

such network is the Simple Recurrent Network (SRN) [18] illustrated in Figure 1.2. The context

units hold a copy of the network’s hidden unit activations from the previous time step, therefore

including the earlier activation of the network with the current computation. In this way, the output

of the network depends both on the current input and on the previous input. These networks can be

trained using Backpropagation Through Time [85]. The major benefit of this approach to learning

about patterns across time is that the length of the input sequence is not constrained within the

architecture or training algorithm. Therefore, information learned about a word in one position of a

sentence will automatically be generalised to that same word appearing in any other position; this

is a result of the same links being used to process each item in every position of the input sequence.

In Section 3.4 several examples are given showing how these networks have been applied to

language learning. However, direct applications of the SRN do not compare well with the statistical

parsers; specifically, the output representation of the SRN is not structured, as required to represent

a parse tree. The reason for this limitation is that, in each time period, each output unit can only

specify one piece of information, i.e. the amount of information output by the network is linear with

respect to the number of input words. In order to represent a parse tree, the relationship of each word

to each of the preceding words must be shown, which requires a quadratic amount of information

with respect to the number of input words.

This shortcoming can be addressed by extending the representational power of standard connec-

tionist units, and this can be done using a technique called Temporal Synchrony Variable Binding

(TSVB), introduced by Shastri and Ajjanagadde (S&A) [92]. TSVB enables a connectionist archi-

tecture to represent and compute across multiple entities by using the synchrony of activation pulses

10

432

Has_Subject

Object

time

Mary(y) & Noun(y) & Object(y)

In the second time period, it adds:

John(x) & Noun(x) & Subject(x) & Has_Subject

the network represents the proposition:

In the first time period

Subject

Noun

Mary

John

Figure 1.3: An example of variable binding with temporal synchrony.

to represent entities. Within a TSVB network, each time period is divided into a number of phases,

and pulsing units represent information about each entity in separate phases. Thus, in each time

step the network cycles through the set of entities, computing about each one independently. To

communicate information between entities there are also non-pulsing units, which compute across

all phases and represent information about the overall context.

Figure 1.3 illustrates the use of TSVB to represent variable bindings. It traces the activation

values of some hypothetical units in a network parsing the end of the sentence ‘John loves Mary’.

Units that are pulsing synchronously, such as John and Subject, are representing information about

the same entity; this is analogous to the use of identical variables within a logical proposition. The

non-pulsing unit Has Subject represents information about the overall sentence, and therefore its

activation appears in every phase of the time period.

The use of TSVB in a connectionist network has two important consequences. The first is that

the network can output structured information. By representing every constituent in the sentence as a

separate phase in each time period, the activation of an output unit can indicate the relationship of the

current word with every constituent within the sentence. For example in Figure 1.3, when “loves”

is input (the first period shown) the Subject unit is activated in the phase previously introduced for

“John”, to indicate that “John” is the subject of the verb. The second consequence is that TSVB

networks inherently generalise information learned about one entity to other entities. Because dif-

ferent times (i.e. phases) are used to represent different entities, and the same link weights are used

at every time, the same learned information is applied to every entity. This argument is used by Hen-

derson [37] to demonstrate that TSVB networks possess inherent systematicity. At the time, this

was an ‘in principle’ argument only, as TSVB had only been implemented using binary-threshold

units, for which no training algorithm had been devised. Indeed, the nature of binary-threshold

units means that their activation function is not differentiable, and therefore standard connection-

ist training algorithms, such as backpropagation, are not applicable. The representational power

of TSVB networks has been demonstrated in SHRUTI, a model of reflexive reasoning [92], and

NNEP, a model of syntactic parsing [36]. Each of these models used phases to represent variables

and interconnections between nodes to represent logical rules, thereby demonstrating an equivalent

representational power to that of a symbolic system using propositional logic.

These considerations lead to a natural prediction: given a trainable TSVB network with recur-

rent links, its representational ability should include that of both standard connectionist networks

and the symbolic rules used in SHRUTI and NNEP. Furthermore, the fact that the network is train-

able means that two types of generalisation are inherent to its architecture: the first is to generalise

across time, due to the recurrent links, and the second is to generalise across multiple entities, as

identical weights apply to each phase. Thus, the ability to generalise across structure, typical of

11

symbolic systems, will have been allied to the ability to interpolate between data points, as with

standard connectionist networks. It is the aim of this thesis to develop and test such a trainable

TSVB network.

1.3 Defining and Testing Simple Synchrony Networks

The contribution of this thesis falls into two parts. First, on the theoretical side, is the integration

of the two extensions described above into a trainable connectionist architecture. This integration is

achieved by defining Temporal Synchrony Variable Binding (TSVB) units with sigmoid activation

functions, and then adding them to the architecture of a Simple Recurrent Network (SRN). The

architecture then retains the ability of SRNs to learn about patterns across time, and the TSVB units

provide the additional ability to represent multiple entities and generalisations across them.

The second contribution of this thesis is the set of results from experiments on learning to

parse samples of real natural language. The main intention here is to test whether the theoretical

capabilities of the Simple Synchrony Network really do give it the power to learn in domains such

as natural language acquisition which require learning structured representations from real world

data.

The major results from this thesis are summarised in [56].

1.3.1 The Simple Synchrony Network

The Simple Synchrony Network (SSN) is defined by reimplementing the central ideas of Temporal

Synchrony Variable Binding (TSVB) [92] using standard connectionist units with sigmoid activation

functions. The following three principles encapsulate the central ideas of TSVB:

� Each time period is divided into discrete phases, each phase to represent a distinct entity.

� Pulsing units compute within each phase independently of other phases, and so compute

information about distinct entities.

� Non-pulsing units compute across all phases, combining information about several entities.

There are a number of possible approaches to implementing these ideas. In this thesis, the

basis of the implementation is to introduce temporal synchrony into standard connectionist units.

This is achieved by creating two kinds of unit. The first is the pulsing unit, which computes in

individual phases independent of other phases. Its output activation in each time period is formed

from its separate activation in each phase of the specific time period, i.e. the pulsing unit computes

activation for every phase in the current time period. The second type of unit is the non-pulsing

unit, which computes across all phases equally in the current time period; its output activation in

a specific time period is constant across every phase in that time period. For each of these units,

output activation is computed using the standard sigmoid activation function; for pulsing units, this

function is applied to every phase in each time period. Also, in computing the net input to each unit,

the same weight is applied to activation passed between units irrespective of phase number; this last

fact means that TSVB networks generalise in accordance with systematicity [37].

Training such networks is achieved through a novel extension of Backpropagation Through

Time (BPTT) [85]. When training a recurrent network, BPTT begins by unfolding the network

over time, making a copy of the network for every time step in the sequence. Extending BPTT to

TSVB networks involves making a further copy of the network for every phase in each time period.

Both the pulsing and non-pulsing units are copied once per time period and the pulsing units are

copied additionally once per phase. As with standard BPTT the unfolded network is a feed-forward

12

Figure 1.4: Three Simple Synchrony Networks.

network, and can be trained using backpropagation. However, every copy of each link must be

updated so as to have the same weight, achieved by summing all the individual changes to each

copy of the link.

The SSN itself is formed by restricting the available architectures so that pulsing units can never

pass activation to non-pulsing units. This restriction, which was first suggested by experimental

evidence, is required because the output of units is never precisely 0 or 1; when a non-pulsing

unit sums up its inputs over every phase in the time period, a near-zero input on every phase can

accumulate into a significant input and produce an erroneous response. This restriction, however,

seems to remove the possibility of an interaction of information computed about separate entities.

To overcome this problem, a separate set of input units is required, one set being pulsing input units

for inputting information about separate entities, and the second set being non-pulsing input units

for inputting information about all the entities. Such networks are illustrated in Figure 1.4; the

rectangular layers are composed of non-pulsing units and the block-shaped layers pulsing units.

With such networks, the input can be divided into two parts: one part providing information

about separate entities, and one part dealing with the entire situation. In the context of experiments

in language learning, however, the only input is that of individual words (or word-tags). For all the

experiments in this thesis, the input to the network is arranged as follows. The separate pulsing and

non-pulsing sets of input each contain a separate input unit for each word in the training corpus, i.e.

both the pulsing and non-pulsing inputs will use a localist representation, with only one input unit

being active at any given point in time. Each word in the sentence will introduce a new entity to the

network, i.e. it is introduced on the pulsing inputs in a previously unused phase. Simultaneously, the

word is also introduced on the non-pulsing inputs. The non-pulsing components of the network do

not use phase numbers to separate the entities and therefore compute information about the sentence

as a whole, based on every word in the sentence. The pulsing components of the network compute

entity information about the individual words in the sentence. These two pieces of information are

then combined so that the network can output information about every entity in the network. The

network is trained to output information about the individual constituents in the target parse tree and

their structural relationships, based on the information on the words input to the network.

Throughout this thesis, the SSN referred to will be the TSVB networks described above. SSNs

embody all the generalisations and representational strengths argued for with respect to the more

general class of TSVB networks (i.e. those where links from pulsing to non-pulsing units are al-

lowed). However, there is a major source of inefficiency present in the definition of the SSN, which

is the requirement that every phase introduced to the network by the input be retained throughout

the lifetime of the current input sequence; this means the SSN requires a quadratic number of com-

putation cycles with respect to the size of input sequence. For many applications, such as natural

language, not all phases will be required for later computation as separate phases. For example, lim-

itations in human cognitive abilities mean that certain sentence constructions, though theoretically

possible from the grammar, simply never arise in any sample of naturally occurring text. This is

13

due to limitations on human short-term memory [16, 70]. Thus, in many applications, it is possible

for the SSN to only retain a limited number of ‘relevant’ phases. The problem is in determining the

relevance of a phase.

In order to achieve this in a SSN, one possible extension is to use a fixed-bound queue (known as

the short-term memory) of current phases, performing computation only for phases appearing in the

queue. Whenever a new phase is introduced, it is placed at the head of the queue. Whenever a phase

is referred to during the output, it is also placed at the head of the queue. Phases not referred to in

the output will, sooner-or-later, be pushed off the end of the queue, and so forgotten. Because the

queue is a fixed size, this means the SSN now only requires a number of computation cycles directly

proportional to the size of the input sequence, i.e. resource requirements are now linear instead of

quadratic. Throughout this thesis, the theoretical properties of the basic SSN will be of greatest

interest, as the main focus is on determining the theoretical learning capability of trainable TSVB

networks. However, for specific applications, where efficiency is of greater interest or cognitive

plausibility important, the SSN with a short-term memory should be employed. This version of the

SSN is used in the experiments in learning to parse in Chapter 5 of this thesis.

1.3.2 Experiments in learning to parse

The trainable TSVB networks are first tested on two toy grammars. These grammars are chosen to

highlight specific generalisations beyond those normally expected of a connectionist network, and

require the TSVB network to output structured information and generalise across multiple entities.

Later experiments test the most efficient TSVB networks, the SSNs, on learning to parse samples

of real natural language.

Two toy grammars

The first ability of the TSVB network to be tested is its ability to handle, and generalise across,

increasing numbers of entities. Accordingly, a simplified version of the task of prepositional-phrase

attachment is used, in which the network must indicate which of a preceding sequence of nouns,

e.g. ‘n
1

n

2

n

2

’, a following prepositional-phrase, ‘p’, modifies. This problem requires the network

to refer to a noun based on its type or position in the sequence. Moreover, by testing the network on

longer sentences than it has encountered in the training data, the network must generalise learned

information to increasing numbers of entities.

The second ability of the TSVB network is related, and that is its ability to output recursively

structured information and generalise learned information across this structure. This ability is tested

using a simple recursive grammar, which generates sentences such as ‘Mary loves John’, or with

optional relative clauses, ‘Mary loves John who likes Jane’. In this case, the network is trained on

sentences with limited depths of recursion and nouns occupying restricted syntactic positions, e.g.

some nouns may only appear in the subject position of a sentence. The generalisation ability of the

networks is tested by using the trained network to parse sentences with deeper levels of recursion

and nouns in novel syntactic positions.

In general, the various TSVB network architectures do learn the above tasks and produce good

generalisation performance. However, one set of networks tends to learn faster and generalise better.

These are the Simple Synchrony Networks, which share a common architectural feature – the lack

of links from pulsing to non-pulsing units.

Parsing real natural language

The two toy grammars demonstrate that trainable TSVB networks learn and generalise in the manner

claimed. The natural progression is therefore to test the networks on a more ambitious task, learning

14

Mary saw the game was bad

NP VVD AT NN VBD JJ

N N

F

S

Parent Sibling Grandparent

Figure 1.5: A sample parse tree. The solid lines indicate the parse tree itself, the dotted and dashed

lines the relationships between the words and nodes.

to parse samples of real natural language. For these experiments only those TSVB networks most

successful with the toy grammars are used, i.e. the SSNs.

The SSNs are trained to output a parse tree when a sentence, a sequence of words, is presented

on its input units. The parse tree is built up incrementally as the network processes the sentence.

For each input word the network should output the set of parent-child relationships which define

that word’s position in the parse tree. Each word is introduced to the network on a new, previously

unused phase, and so introduces a new entity to the network. These entities are used in the output to

represent the individual nodes of the parse tree. Figure 1.5 illustrates an example sentence, ‘Mary

saw the game was bad’, with its parse tree shown by solid lines. The relationships output by the

network for each word are indicated by the dotted and dashed lines in the figure. Three kinds

of relationship are used, corresponding to the three kinds of relationship which may occur within

a parse tree. The first is the ‘parent’ relationship, which identifies the immediate non-terminal

node which each word attaches to. The parent node of these non-terminal nodes are indicated with

‘grandparent’ and ‘sibling’ relationships. This representation for parse trees is referred to as the

GPS representation.

The experiments were performed using a subset of the Brown corpus, the SUSANNE cor-

pus [87], as a source of preparsed sentences. Two changes were made to the corpus before using it

in the experiments with the SSNs. Firstly, because the SUSANNE classification scheme employs

semantic and meta-sentence information, some preprocessing of the corpus data was necessary, re-

moving all information not related to the syntactic parse tree. This simplification does not affect

the boundaries between constituents. Secondly, the parse tree thus obtained must be modified to

conform to the requirement of the SSN and its GPS representation for parse trees that each non-

terminal node be introduced by at least one word. This means that certain pairs of nodes within the

SUSANNE parse tree are collapsed into one. The most important of these is the use of nodes for

verbs as well as for clauses. For example, in the sentence in Figure 1.5, the SUSANNE scheme

would introduce an extra node for ‘saw’ and ‘was’ to indicate that they are verbs. This would leave

the ‘S’ and ‘F’ nodes without an immediate head word, and therefore, in the experiments presented

here, the convention is to remove the extra nodes. Although this is a simplification, the amount of

change is relatively small, with less than 1% of the non-verb constituents being affected, and the

verb constituents could, in principle, be replaced on output from the SSN. In addition, this change

is not linguistically unmotivated, as the result is similar to a dependency grammar [67]. The main

15

reason for making this small change to the corpus is to simplify the SSN’s representation of parse

trees, and so test its ability to learn appropriately from naturally occurring text. Later work may

then address the specific forms of parse tree representation used by different corpora, and whether

the SSN can use them directly. Further discussion on this issue can be found in Johnson [48], which

discusses how the needs for a parse tree representation differ between the corpus and the parser.

To reiterate, the primary importance of these experiments for connectionist language learning

lies in their use of a corpus of naturally occurring text. Not only is the structured output represen-

tation close to the parsing scheme used in the corpus, but also the corpus is based on ‘real world’

sentences. The use of a parse tree representation enables standard statistical measures for evaluating

the performance of a parser to be applied to this connectionist parser. The measure used compares

the number of correctly output constituents with the number in the target or output parse trees. In

the experiments here, the best SSN produced a performance of 80% in testing. What is notable is

that this figure was not worse than that produced in training (in fact, it is better), which demonstrates

that the SSN is learning a robust mapping from the input to the output and so generalising well. In

addition, this good generalisation performance is based on the same architecture as was used in the

toy grammars (only the number of units being altered): this transfer from toy grammars to naturally

occurring text has been a major source of difficulty for previous connectionist approaches to natural

language (for example, see [43, 69]).

1.4 The SSN in Context

This introductory chapter began with an argument that evaluating the importance of a new machine

learning architecture required two forms of comparison, qualitative and quantitative. Evaluating the

SSN on these two criteria lead to the following two questions: How does the SSN’s design compare

with other approaches to learning to parse? How do the results achieved by the SSN compare with

those achieved by other approaches? This section provides summary answers to these two questions.

1.4.1 Qualitative comparisons

In terms of machine learning approaches to natural language, the most natural comparisons for the

SSN are other connectionist approaches, which fall into two main groups: those using the Simple

Recurrent Network, and those using holistic encoding networks.

The Simple Recurrent Network (SRN) [18] is a popular architecture for connectionist language

learning because of its ability to learn about sequences over time. However, its successes have been

confined to two basic tasks: learning to predict the next word in a sentence [19, 21, 81] or to assess

whether a sentence is grammatical or not [60, 62]. Each of these tasks only requires the SRN to

output a single piece of information, either the predicted word for each input, or else to indicate the

grammaticality after the whole sentence has been input. Neither of these tasks is structured in the

sense of producing a representation such as a parse tree.

However, the internal representation of the SRN has been shown to encode, in distributed for-

mat, a rich amount of information about the input sentence. The major question is how to extract

it. St. John and McClelland [47] illustrated how such a representation could be probed to provide

semantic information about the general context of a sentence, even if such information was not part

of the input. For example, a sentence such as ‘Mary ate the spaghetti’ would return the item “fork”

in response to a probe about the instrument used; this response of course depends on the set of

sentences used for training the network.

A further use of the distributed representation within the SRN is demonstrated in Reilly’s [80]

parser, which uses a second network to ‘unpack’ the distributed representation into a parse tree. This

second network is known as a Recursive Auto-Associative Memory [77]. Ho and Chan [43] show

16

how a variety of such parsers can be constructed. They are collectively known as holistic parsers

because they first encode an input sentence into a distributed representation for the entire sentence,

and then decode this representation into a parse tree.

In terms of comparing such parsers with the SSN, the central question is the difference in the in-

ternal representations used by the two approaches. With the SSN, the parsing process is performed

incrementally, outputting all the relations relevant to each word as it is input. With the holistic

parsers, the parsing process is performed en masse, outputting all the information relevant to the

entire sentence after it has been input. In addition, the holistic parser must process the distributed

representation a number of times, each cycle corresponding to an item in the sequential representa-

tion of the parse tree. The distributed representations within the SSN and the holistic parsers there-

fore take on different roles. Within the SSN, the internal representation determines which action to

perform in response to the specific input word; within the holistic parser, the internal representation

must capture information necessary for reconstructing the entire parse tree.

However, the holistic parser, although capable of outputting parse trees, has two major limita-

tions. The first is that the form of parse tree is limited because it must be represented as a sequence

for processing by the parser. For example, the preorder encoding used by the Confluent Preorder

Parser [43] forces its output parse trees to be of fixed valency, in which each node of the tree

has a fixed number of child nodes. This limits the application of holistic parsers to more realis-

tic corpora, which typically use more complex forms of parse tree. The second limitation lies in

the holistic representation itself, which seems limited in its ability to handle more than certain toy

grammars [43, 69]. The major aim of the experimental section of this thesis is to demonstrate the

SSN’s ability to transcend these two limits. First, by illustrating how the SSN can output parse trees

of similar complexity to those used in a standard corpus. Second, by demonstrating that the SSN’s

abilities are not confined to toy grammars, but transfer to naturally occurring text.

There are two reasons for the SSN’s success. The first is the use by the SSN of temporal

synchrony to inherently generalise learnt information across structure. This generalisation ability

means that the SSN can apply information it has learnt about words in one syntactic position to

the same words appearing in other syntactic positions. With representations such as used by the

holistic parser, information can only be generalised based on the similarity of the entire parse tree

representation to another. The fact that this structural generalisation is made explicit in the SSN’s

representation of information across pulsing units makes it qualitatively different from the internal

representations used by these holistic connectionist parsers. However, other ways of making these

generalisations explicit are available. For instance, Hadley and Hayward [33] use a highly structured

internal representation to enforce generalisations across the structure represented by the output units.

The problem with this network is that, for anything beyond the example toy grammar, the network

must be provided with a different internal structure.

The second reason for the SSN’s ability to learn from naturally occurring text lies in its more ef-

ficient use of its internal representation. Specifically, the SSN parser incrementally outputs its parse

tree as each word is input. This enables the SSN to focus its resources on the information needed to

parse, instead of additionally having to memorise the preceding part of the sentence. The incremen-

tal nature of the SSN’s operation makes it akin to symbolic parsers such as PARSIFAL [63], and is

distinct from the all-at-once output strategy of holistic parsers.

1.4.2 Quantitative comparisons

Two sets of experiments with the SSN may be directly compared with earlier work. The first of these

is the second toy grammar. This recursive grammar was used by Hadley and Hayward [33] to verify

that their Hebbian connectionist network could learn to generalise across syntactic constituents.

The SSN achieves similarly excellent results, demonstrating its similar ability to generalise across

17

syntactic constituents. Where the SSN differs from this Hebbian model is that applying the latter

directly to a different grammar would be difficult, whereas the SSN handles the change smoothly.

The second comparable set of experiments are those using a corpus of naturally occurring text.

The experiments are conducted to produce a set of results of comparable format to those based

on statistical parsers. Specifically, the same performance measure is used with the SSN as with

statistical parsers. As is shown in Chapter 5, the SSN’s best result is 80% average precision/recall

on the testing set. Notable about this result is that it is similar to that achieved on the training set,

indicating that the SSN has learnt a robust mapping from its input to output, without overfitting.

Because these results are in the same terms as those of statistical parsers, it is possible to make

comparisons between the two approaches. However, direct conclusions cannot be drawn without

testing such a parser on the same corpus representation, size and contents.

In an extension to the work here, Henderson [39] has presented a slight variant of the basic SSN

model and compared its performance directly with that of PCFGs on identical corpora. In those

results, the PCFG, due to the restricted size of the training set, was only able to parse half the test

sentences, with a precision/recall figure of 54%/29%. In comparison, the SSN was able to parse

all the sentences and yielded a performance of 65%/65%. Even when counting only the parsed

sentences, the PCFG only had a performance of 54%/58%, compared to the SSN’s performance of

68%/67% on that subset. These results show that the SSN compares well on an empirical level with

a well-established, though basic, parser.

This thesis has therefore provided empirical evidence that the SSN is an effective model for

learning to parse. This may be explained by the presence of Temporal Synchrony Variable Bind-

ing which provides an inherent ability to generalise across output structures. The effectiveness is

demonstrated by specific results with toy grammars and a corpus of naturally occurring text. The

important point to note is that the SSN transfers its ability smoothly from the toy grammars to the

natural text. This contrasts with other connectionist approaches to language learning whose perfor-

mance on toy grammars has so far not been shown to scale up [43, 69].

1.5 Thesis Overview

As indicated in Section 1.3, this thesis is divided into two main contributions, theoretical and em-

pirical. Accordingly, the first two chapters of this thesis consider earlier work in these two areas,

and the next two consider the separate contributions of this thesis.

The theoretical discussion begins in Chapter 2, where the two extensions of the basic connec-

tionist network which form the Simple Synchrony Network are discussed. In particular, the chapter

contains a justification of why these particular extensions are selected. To do this, Chapter 2 is di-

vided into the three kinds of ability required for learning about language: learning statistical infor-

mation about static patterns, learning about patterns across time, and representing multiple entities.

All three abilities are required for effective language learning, but it will be argued that no simple

connectionist network to date has provided the necessary combination of all three in a trainable

architecture.

Chapter 3 contains an overview of previous work in language parsing. This begins with a sum-

mary of classical parsers, and some considerations of the parsing process from a cognitive perspec-

tive. Statistical parsers are summarised next, and then a review is made of the major models of

connectionist language learning. In particular the chapter shows that standard connectionist tech-

niques have yet to rival the results achieved with the statistical algorithms. This is largely due to

representational inadequacies, which may be overcome by using the SSN. Those connectionist mod-

els which can output the necessary representations have so far not transferred well from learning

about toy grammars to naturally occurring text.

18

Chapter 4 contains the definition of trainable recurrent Temporal Synchrony Variable Binding

(TSVB) networks. These TSVB networks are a combination of the architecture of Simple Recur-

rent Networks (SRNs) with the representational power of TSVB units, and can be trained with a

novel extension of Backpropagation Through Time, the standard training algorithm for recurrent

connectionist networks. Because TSVB units come in two varieties, pulsing and non-pulsing, there

is a wide range of possible TSVB network architectures, and the chapter contains several examples

from this range. In addition, the use of a bounded queue of phases is described, which provides

a mechanism for retaining only the relevant phases for computation by the network, so making its

resource requirements linear in the length of input sequence. The chapter concludes with the first of

the experimental results, in which the specific generalisation abilities of TSVB networks are tested

using two toy grammars. These generalisation abilities are additional to those inherent to the SRN

architecture, and demonstrate that the TSVB networks and training algorithm as proposed do in-

deed combine the different abilities of the two extensions to the basic connectionist network. At

this point the main theoretical contribution of the thesis has been described, and the experiments

have demonstrated its soundness.

Chapter 5 contains a more ambitious set of experiments, attempting to transfer the SSN directly

to learning about naturally occurring text. The chapter describes how an appropriate representation

of the parse trees within the corpus can be developed for use by the SSN, and ends with a series of

results achieved by the various SSN architectures with this corpus.

Chapter 6 concludes this thesis with an evaluation of the SSN and suggestions for further work.

19

Chapter 2

Connectionist Networks

Connectionist networks (also known as neural networks) are a popular architecture for learning

within a wide range of domains. The basic principle being that complex representations can be

constructed from the interaction of many simpler ones. Some of the motivation for this approach

is based on an analogy with the brain, which is composed of many neurons, each of which appears

relatively simple in computational terms, except that each has many connections with other neurons.

A more computer-science oriented motivation is that this approach provides a robust and gen-

eral learning system; the same representation and training algorithm can be used in a wide range

of applications, with only the training data being varied. In particular, excellent results have been

achieved in applications which involve learning about static patterns, in which a given input pat-

tern is matched to an output pattern. Typical examples include learning to identify people from

photographic portraits [15], driving a car down a highway [78] and a system which learns to recog-

nise spoken words [57]. This adaptability of connectionist networks rests on the fact that, given

enough training data, a suitably-sized connectionist network can eventually learn to approximate

an expressive range of functions [45]. Results on the power of connectionist representations were

given from the early days of connectionist networks [65]. Much of the interest in connectionist

networks is that these complex representations can be learned by the network through training with

backpropagation [86].

However, in spite of these successes, the results of applying connectionist networks to more

complex cognitive tasks have been disappointing. These more complex tasks include natural lan-

guage processing (NLP) and, more generally, a range of problems requiring the inference of gram-

matical information. The distinction between these tasks and the ones involving static patterns is

two-fold. Firstly, the patterns presented on the input form a temporal sequence, so that the output

for a given pattern depends on the patterns encountered previously in the sequence. Secondly, the

outputs themselves may refer to items encountered in earlier parts of the sequence. These properties

are both present in natural language: a given noun in a sentence may be a subject or object depend-

ing on the other words in the sentence, and the noun will be the subject or object of a particular

verb.

The aim of this thesis is to develop a new connectionist architecture which is appropriate for

learning in domains such as NLP. In order to justify the design of this new architecture, and show

why it is an important addition to the wide range of connectionist architectures already in existence,

some coverage of the literature on connectionist networks is needed. Accordingly, this chapter

describes connectionist networks in terms of their ability to learn and represent particular classes of

problem. The chapter focuses on the three broad areas as described above: learning to recognise

static patterns, learning to recognise patterns across time and learning about entities (to solve the

reference problem).

Each section of this chapter deals separately with each of these areas. Section 2.1 describes

20

the basic feed-forward connectionist network. This is composed of units which pass the weighted

sum of their inputs through a sigmoid activation function and output a real value between 0 and

1. A training algorithm, backpropagation, is also defined, for training feed-forward networks, i.e.

those where activation only passes from the input units towards the output. These networks are

most suited for learning to recognise static patterns, i.e. those which are presented to the network in

independent time periods.

Section 2.2 describes networks for learning about patterns across time, where the current output

depends on the previous input to the network as well as the current input. Two basic approaches

to this problem exist: time-delay neural networks, which use a buffer of inputs to present previous

inputs alongside the current input, and recurrent networks, which use previous activations of the

network as a context for the current input. As will be seen later in this thesis, the recurrent network

is very popular for connectionist language learning. Section 3.4 in Chapter 3 discusses some of the

work in this area with Simple Recurrent Networks [18, 19].

NLP additionally requires of an architecture the ability to learn about structured information,

for instance, to output a parse tree representation of an input sequence of word-tags. Structures

such as parse trees also encourage certain forms of generalisation, which led to the observation by

Fodor and Pylyshyn [24] that a particular regularity in language, known as systematicity, could not

be represented by the standard connectionist network. Section 2.3 covers a variety of connectionist

approaches for representing structured information. In particular, Temporal Synchrony Variable

Binding (TSVB) [92] is introduced, which will form the focus of Chapter 4, implementing TSVB

in trainable connectionist networks.

2.1 Networks for Learning Static Patterns

This section describes standard feed-forward connectionist networks. Such networks are defined in

terms of the individual units composing the network, their interconnections and how they can be

trained. In this section the networks are restricted to being feed-forward, which means activation

may only flow away from the network’s input units towards its output units. A suitable training

algorithm for such networks is also defined. For this kind of network, whether the input-output pat-

terns are the same (as in auto-associative tasks) or not (as in hetero-associative tasks), the target for

the network is a function mapping each input pattern to a given target output pattern independently

of the other patterns in the data set, i.e. the target pattern for a given input is static.

2.1.1 Defining the network

The basic building block for a connectionist network is the unit, as depicted in Figure 2.1(a). Each

unit has a number of incoming links, and one or more outgoing links. The incoming links carry

activation from previous units, and the outgoing links carry activation on to later units. There is

also a bias link, labelled �, which is assumed, in all that follows, to be an incoming link from a

unit whose activation is permanently 1, and therefore does not require special treatment (i.e. it is

assumed to be present for every unit in all that follows, without needing explicit description). Each

link carries activation from a source unit to a destination unit, scaling this activation by a weight.

Thus, o
d

= w

ds

� o

s

, where o
d

is the activation passed to the destination unit, o
s

the activation of

the source unit, and w
ds

the weight on the link between them.

Standard feed-forward networks have three kinds of unit: input, hidden and output, as illustrated

in the example network in Figure 2.1(b). Input units are those where the input pattern is presented

to the network. Therefore, the output activation of an input unit, j, is that of its corresponding input

pattern, in
j

.

21

(b)

Hidden

Output

Input Units

(a)

output

θ

input

x3

x1

x2 unit

Figure 2.1: The standard connectionist unit, and a feed-forward network.

Each hidden or output unit, j, forms its net input by summing the activations received from its

incoming links, indexed by the set of integers, Inputs
j

.

net
j

=

X

i2Inputs
j

w

ji

o

i

This net function is then passed through a non-linear thresholding function, known as the sigmoid

activation function.

o

j

= �(net
j

) =

1

(1 + e

�net
j

)

This completes the definition of standard feed-forward connectionist networks; the next section

addresses the training of such networks.

2.1.2 Training the network: Gradient descent

The trainable parameters within a connectionist network are, firstly, the weights of each link, and,

secondly, the number of units and how they are interconnected. This section describes the standard

gradient descent algorithm for training the weights upon each link of a general feed-forward net-

work. There also exist a number of techniques for constructing networks by changing the number of

units and their links (for example, cascade-correlation [22]). These techniques, although potentially

helpful in reducing training times, are not used in the experimental part of this thesis, and so are not

described here.

In order to train the weights within a fixed network architecture, the standard technique relies

on gradient descent. The basic principle behind gradient descent is that the network’s performance

on a set of training data can be plotted against the possible values of its weights to form an error

surface. Somewhere within that surface is a point of minimum error, and the purpose of the training

algorithm is to locate that minimum point. Gradient descent does this by using the gradient of the

error surface as a means for altering the weights within the network. Repeated adjustments of the

weights are made to move the network across the error surface in a ‘down-hill’ fashion, aiming to

locate a point of minimum error. Accordingly, there are three factors to consider: how the gradient

information for the error surface is to be computed, how this determines the changes to be made to

the weights, and when the changes are to be made.

In order to compute the gradient information, the error surface of the network must be found

with respect to the weights. In a supervised learning task, the error of each unit is judged according

22

to the target output for the network. Thus, a set of integers, D, indexes those units in the network

which have a target output, d
k

for unit k 2 D. The output error of unit k is,

e

k

=

(

d

k

� o

k

if k 2 D

0 otherwise

The aim of gradient descent is to minimise the sum-squared error of the network, which is

defined as,

E =

1

2

X

k2U

e

2

k

where U represents the set of all units in the network.

The gradient of this function with respect to the weights is found through partial differentia-

tion, and the change in the weight is assumed to be linearly proportional to this gradient. A standard

derivation (e.g. Rumelhart & McClelland [85]; Mitchell [73]) leads to the following equations defin-

ing the change to the weight between arbitrary units i and j:

�w

ji

= �

@E

@w

ji

= ��

j

o

i

where � is a learning coefficient.

The value for �
j

refers to the error on any individual unit of the network, and this is found from

the sum of the unit’s own error with respect to the target and the error on any units which it is input

to; the sum is then scaled by the differential of the activation function. Thus, for a unit k (assumed

to be other than an input unit),

�

k

= o

k

(1� o

k

)

0

@

e

k

+

X

l2U

w

lk

�

l

1

A

By convention, w
lk

= 0 if k 62 Inputs
l

, i.e. if no such link exists.

Having shown how the gradient of the error function is computed, and how this determines the

weight changes to be made, all that needs determining is the time for computing these changes,

and there are two basic choices. The on-line approach updates the weights after each pattern is

seen by the network. Batch update waits until every pattern in the training set has been presented

to the network, and then every weight is changed based on the total set of computed updates. The

latter approach more accurately approximates the gradient of the total error surface of the network

upon the training set. However, in trials, the resultant performance of the two approaches does not

differ significantly, and the on-line approach has the advantage that it is less likely to fall into local

minima. That is, areas of the error surface which are a minimum in the local, not the global, context.

Such an effect is shown by Lawrence et al. [62].

2.2 Networks for Learning Dynamic/Temporal Patterns

The previous section has described the basic feed-forward connectionist network and its training

algorithm, which is an excellent model for learning to compute an output pattern in response to an

input pattern. This and the next section present extensions to this model which make it suitable

for dealing with more complex problems typical of higher cognitive processing. In this section, the

23

handling of patterns which extend across time is considered, and in the next, the representation of

structured patterns.

So far, a connectionist network computes its current output directly from its current input. How-

ever, some problems require either or both of the input and output to represent a set of values

presented over time, a sequence. For example, in processing language, the syntactic class of the

current word may depend on the preceding words. There are three types of problem which require

this temporal treatment:

Sequence Recognition The network is required to produce a particular output pattern when, or just

after, a specific input sequence is seen. A typical example of this is speech recognition, where

the word spoken is identified after processing the sequence of sounds comprising it.

Sequence Completion or Prediction The network is required to produce a sequence of outputs,

completing the pattern begun by the input sequence. This is a generalisation to dynamic

patterns of the auto-associative or pattern completion task, as performed by the feed-forward

networks. An example of this would be continuing a time series after seeing the first few

terms.

Temporal Association The network is required to produce a sequence of outputs in response to

a specific input sequence, with the output sequence, in general, being different to the input

sequence. This is a generalisation of the hetero-associative task to dynamic patterns, and

includes sequence recognition and completion as special cases.

The problem of learning to parse natural language, as considered in this thesis, is an extended

example of the first type of problem, sequence recognition. For example, constructing a parse tree

requires forming the syntactic class for the current word, which is determined by the previous words

in the sentence. The feed-forward networks considered in Section 2.1 are unsuitable for this kind

of problem as they use only the current input to compute the current output. There are two basic

solutions to this problem: time-delay neural networks and recurrent networks.

The most straight-forward is the time-delay neural network (TDNN), which uses a buffer on the

input to maintain a copy of previous input items, and so present them to the network along with the

current input. A standard feed-forward network can then be used, which treats the entire sequence

as a single input value, and therefore computes its output based upon the entire sequence. Two basic

problems with this approach are the need to predetermine the maximum length of input sequence to

be considered at any one time, and the need for extra training and space requirements to deal with

the additional units and links.

These problems are solved in the second approach, which augments a standard feed-forward

network with context units to form a recurrent network. A context unit’s activation is a copy of a

hidden unit’s activation from a previous time step. Input items are presented one at a time and the

network uses its context units to preserve information computed by the hidden units over time, and

therefore input items can influence computations on later items.

The following sections deal with these two approaches in more detail.

2.2.1 Time Delay Neural Networks

The most direct method of computing an output pattern from an input sequence is to retain the entire

input sequence as input to the network. One technique for achieving this is to use a window over

time. For instance, in an application where sequences of up to seven items in length are of relevance,

the current input to the network will be the simultaneous presentation of the current input item, the

previous input item, and the input items from up to seven previous time steps. An example of this

24

type of network, NETtalk [89], is considered in more detail below. There are a number of similar

approaches. For instance, a shift register can be used, which acts as a first-in-first-out buffer, holding

the last seven items presented, each new item ‘pushing out’ the oldest. The network computes its

output based upon the contents of this buffer.

Each of these techniques is similar in providing the network with links to input items across

a sequence, and they share two common problems. The first is that the maximum length of input

sequence considered at any time is restricted to the amount of space dedicated to the input, and the

network must be preconfigured (and trained) on the expected sequence length. Thus, the network

is able to handle sequences of arbitrary length, but not dependencies between items of the sequence

at arbitrary separations. The second problem is that each position in the sequence has a separate

physical link, and each link has to be trained independently. This implies that for the network to

learn the consequence of the presence of a given input item, irrespective of its position, it must alter

weights appropriately on links for every possible sequence position, which requires duplication of

effort. For some tasks this may be beneficial, as a different effect may be required depending on the

relative position of the input item in the sequence. For other tasks an identical effect irrespective

of position in the sequence is required. For example, performing a logical function on the previous

n inputs requires an identical effect for each element in the sequence irrespective of position, but

a function where the value of each input decreases with age would not. Problems where we need

identical performance independent of sequence position can make the training process longer, be-

cause examples of a particular input will have to be presented for each possible position of the input

in the sequence.

NETtalk

One example application of a TDNN is the NETtalk project [89] which aimed to train a network

to pronounce English text. The task for the network was to determine the relevant phoneme for

each letter in the sample of English text presented to it. However, the rules for generating correct

pronunciation of English are not the result of mapping individual letters directly to phonemes, as

English is not a phonetic language. Instead, phonemes are selected based upon the current letter and

its context, both the preceding and the succeeding letters are of relevance. The task is therefore one

of sequence recognition, and NETtalk used a window of 7 characters.

The architecture of NETtalk is shown schematically in Figure 2.2 (after [41]). The figure illus-

trates how 7 consecutive characters from the text are presented to the network, with the output being

computed for the central letter. Each input letter triggered one of 29 inputs (one for each character,

plus some punctuation); these 7x29 input units fed into 80 hidden units, with 26 output units com-

pleting the network. The network architecture is a standard feed-forward network, and is trained

using backpropagation. NETtalk was trained on 1024 words with the target pronunciations, and

achieved 95% accuracy after 50 training epochs. On testing this on some unseen text, the network

achieved 78% accuracy, producing quite intelligible text.

The generalisation performance of the TDNN from the seen text to the unseen is impressive, and

demonstrates that such a network can learn the context of an input item with respect to a sequence.

This result can be understood because the specific generalisations in the application match those

provided by the network. Firstly, the window of seven letters onto the text was sufficiently long

to provide the necessary context for each phoneme, and this will not change with different texts.

Secondly, the letter for which the phoneme is being computed is always in the same location of

the input window, and the preceding and succeeding letters are always in the same locations of that

window. This means that no generalisation is required of information learned about letters in one

position of the window to other positions of the window; instead, each window location corresponds

at all times to a particular contextual position for the current phoneme.

25

Thi hts input

Hidden Units

\z\

(phoneme code)

Output Units

i s e

Figure 2.2: Diagram of NETtalk Architecture.

Hidden

Context Input

Output

Figure 2.3: Diagram of Simple Recurrent Network

The next section deals with Simple Recurrent Networks, which do not have the same constraints

as the TDNN, and are therefore suited for a different class of application.

2.2.2 Simple Recurrent Networks

The previous section presented one solution to the problem of working with input sequences. This

involved maintaining a window or buffer allowing the network access to items across a period of

the input sequence. The problems with this technique arise from the duplication of input units and

links and the likelihood that this will lead to increased training time if the application requires a

generalisation of learned information across different input positions. These problems are caused

by the duplication of units in space to represent sequences spanning a period of time. Instead, by

representing the context of the sequence in time, the network can itself carry forward information

from previous input items to aid in computing output for the current input. The most significant

example of this approach is that of Elman [18, 19], the Simple Recurrent Network (SRN), which

uses context units to capture information from previous positions in the sequence. Jordan [49] also

used context units in a slightly different architecture to Elman. The SRN is described here because

of the experiments in natural language processing performed by, among others, Elman [19, 21],

Lawrence et al. [60, 61, 62] and Reilly [81], and discussed in Section 3.4 of Chapter 3.

26

The basic architecture of an SRN is shown in Figure 2.3. On each time step the next input item is

presented to the network. Activation is then passed from the input and context units into the hidden

units and then to the output units, as in a standard feed-forward network. Finally, the activation

of each hidden unit is copied into its associated context unit, as indicated by the dotted-link in the

diagram.

The definition of a feed-forward network can be extended in a natural manner to a network

using context units to implement recurrence, including a one-to-one function C which maps each

unit to its associated context unit; the function C�1 is its inverse, mapping each context unit to its

associated unit. The output of any unit j is defined as follows:

net
j

(t) =

X

i2Inputs
j

w

ji

o

i

(t)

o

j

(t) =

8

>

>

>

<

>

>

>

:

in
j

(t) if j is an input unit

o

i

(t� 1) if 9i:j = C(i) and t > 1

0 if 9i:j = C(i) and t = 1

�(net
j

(t)) otherwise

Note how the second and third lines for the activation of unit j apply if j is a context unit; if so, then

the activation of unit j is that of unit i in the previous time step, unless there is no previous time

step (i.e. t = 1), when unit j’s activation is 0.

Training Simple Recurrent Networks

Although one advantage that SRNs have over TDNNs is their compaction of a spatial representation

of the input sequence into a temporal representation, for the purposes of training this is an incon-

venience. Training requires the network to review all the steps in the computation which led to the

current output, and this requires a review of the operation of the network over all previous time

steps.

Training of SRNs is most simply performed using Backpropagation Through Time (BPTT) [85].

The first step in using BPTT is to unfold the network over time, and so retrieve the full history of

activation through time.

In Figure 2.4 the SRN of Figure 2.3 has been unfolded to show the computation steps which

produce the output dependent on the last three input items. The activation of context units at a time

t is a copy of the activation of the hidden units at time t�1, and this is indicated by the dotted links.

It is this link which provides for the passing of activation between time steps. Note that the context

units will begin with zero activation, as there are no preceding hidden units. This unfolded SRN is a

feed-forward network, and may be trained using standard back-propagation. The output error is fed

back through the links, and an error is associated with every hidden unit at each time step. The one

complication with this technique is that the link between, for example, input unit 1 and hidden unit

1 is duplicated at time steps 1, 2 and 3. The weight changes associated with this link at the three

time steps are therefore added together, and the total change applied to every copy of the link. It is

this complication which enables the SRN to compact the spatial representation of a sequence over

time into a temporal one.

Weight-update equations can be given for recurrent networks trained with BPTT by a simple

extension to those given for feed-forward networks. As before, the gradient information is computed

from the error surface of the network with respect to the weights. In a supervised learning task, the

error of each unit is judged according to the target output for the network. Thus, a set of integers,

D(t), indexes those units in the network which have a target output at time t, d
k

(t) for k 2 D(t).

The output error of unit k is,

27

Time Period 3 Time Period 2 Time Period 1

Input

Hidden

InputContext

Hidden

Context Input Hidden
Output

Output

Output

Figure 2.4: Diagram of Unfolded Simple Recurrent Network

e

k

(t) =

(

d

k

(t)� o

k

(t) if k 2 D(t)

0 otherwise

The aim of gradient descent is to minimise the sum-squared error, E, of the network over a

sequence of time steps [t
1

; t

2

].

E(t

1

; t

2

) =

1

2

t

2

X

t=t

1

X

k2U

e

k

(t)

2

where U represents the set of all units in the network.

As before, the gradient of this function with respect to the weights is found through partial

differentiation, and the change in the weight is assumed to be linearly proportional to this gradient.

�w

ji

= �

@E(t

1

; t

2

)

@w

ji

= �

t

2

X

t=t

1

�

j

(t)o

i

(t)

where � is a learning coefficient.

The value for �
j

(t) refers to the error on any individual unit of the network at time t. The input

units and context units require special treatment. By definition, input units never have an error, and

context units act as place-holders for passing activation between time periods and not as computing

units in their own right. Therefore, context units are used during training to pass back to their

associated hidden units the sum of the error on the hidden units which they are input to, i.e. the error

on a context unit j is:

28

�

j

(t) =

X

l2U

w

lj

�

l

(t)

The error of non-context units is affected by three elements: the unit’s own error with respect to the

target, the error on any units which it is input to, and the error received from the next time step via

any context unit. The sum of these values is then scaled by the differential of the activation function.

Thus, for a unit k (assumed to be neither an input nor context unit):

�

k

(t) = o

k

(1� o

k

)

0

@

e

k

(t) +

X

l2U

w

lk

�

l

(t) + �

C(k)

(t+ 1)

1

A

By convention, w
lk

= 0 if k 62 Inputs
l

, i.e. if no such link exists. Also, �
C(k)

(t + 1) = 0 if

t = t

2

or k does not have a context unit.

This procedure is, however, inefficient in its use of space; copies are made of the network for

every time step in the sequence. Consequently, the unfolding is often kept to a fixed maximum to

keep this within a limit. Once the network has been trained, the ‘folded’ form may be used in testing

the performance on new data. Thus, the network takes up minimal space during operation.

Two other techniques for training SRNs are Real Time Recurrent Learning [103, 102] and Time-

Dependent Recurrent Backpropagation [75] Each of these techniques requires large storage space,

for the same reasons given above for the unfolding process – training involves a review of all steps

of the computation which led to the current output value. The difference is that, instead of feeding

the error backwards through time, Real Time Recurrent Learning propagates information about

the gradient of the error surface forward through time. Unfortunately, this approach has greater

computational complexity than BPTT, as reported by Williams and Zipser [104].

2.2.3 Comparison

In order to add the ability to handle patterns across time to the standard connectionist network, two

proposals have been considered. The first, Time Delay Neural Networks (TDNNs), uses a window

or buffer over the input sequence in order to present a sequence of input items to the network at one

time. This has its limitations, particularly as the size of the window must be predetermined at the

training stage. The second proposal is the Simple Recurrent Network (SRN), which uses context

units to retain activation of its hidden units from previous time steps. The SRN provides effective

learning of patterns across time, and does not have the limitation of a fixed bound on the length of

temporal dependencies which it can learn. This use of context units also leads to a more compact

representation.

The effect of this representation on information acquired during learning can be seen when com-

paring the unfolded SRN to the TDNN. The SRN is then duplicated as many times as there are items

in the input sequence, and takes on the form of a TDNN. The difference is that the TDNN retains the

sequence in spatially-separated units, whereas the SRN retains the sequence in temporally-separated

units. This means that different weights are applied to different sequence positions in the TDNN,

but the same weights are applied to every sequence position in the SRN. This generalisation of the

information learnt about an input sequence can be seen by comparing the re-folded SRN with the

TDNN.

The SRN therefore has the advantage over the TDNN in domains where identical performance

irrespective of sequence position is required, and also where the relevant length of dependencies

within a sequence cannot be predicted in advance. Such domains include natural language process-

ing, which accounts for the popularity of the SRN in this area (see Section 3.4 in Chapter 3).

29

2.3 Networks for Learning About Entities/Structured Patterns

Although connectionist networks, such as those described in the previous two sections, have been

successfully applied to a range of problems, further extension are required for applications involving

higher-level cognitive tasks, such as natural language processing, especially when comparisons are

made with other symbolic or statistical systems. One reason for this is the ability of a symbolic

representation to represent structured information. Not only are the specifications of higher-level

problems, syntactic parse trees for example, in the form of structured information, but also the

structure encourages specific kinds of generalisation when learning. Applications of connectionist

networks to both these points are considered in this section.

The difficulty connectionist networks have with structured information may be seen in the abil-

ity of a symbolic system to refer to another data structure by encoding its address into the current

data item. This ability is derived from the use of arrays and lists as primitive data types in con-

ventional computer programs (a point made by Pollack [77]). By this means, trees and sequential

lists are readily encoded. However, this ability is not similarly available to connectionist networks,

which do not have equivalent primitive data types. This has implications in the levels of abstraction

which a connectionist network can handle. This difference arises in the property of systematicity,

which is a specific kind of generalisation prevalent in higher-level cognitive abilities. Systematic-

ity is manifested by the interchangeability of basic elements within a compositional structure. For

example, a system representing the sentence ‘John loves Mary’ as a parse tree will automatically

be capable of representing the sentence ‘Mary loves John’, due to the interchangeability of nouns

within a sentence. This ability was used by Fodor and Pylyshyn (F&P) [24] in their critique of

connectionism as an adequate cognitive framework for higher-level tasks such as natural language

processing.

This section begins with a brief introduction to some possible forms of structured representa-

tion. A number of problem types involving structured representations is identified, and hence a

careful focus is required within the following discussion. The major types of connectionist network

developed for handling structure are covered, but because this thesis is concerned with natural lan-

guage parsing, more emphasis is placed on those networks which handle features of relevance to

this domain.

The first approach considered is the Recursive Auto-Associative Memory (RAAM) architecture

of Pollack [77], which learns holistic representations of sentences, and was one of the first attempts

to address the issue of representing structured data within a connectionist framework. Pollack ar-

gues for the uniqueness of connectionist representations, in that they can be manipulated without

extracting their constituent elements. The RAAM manipulates structured representations such as

parse trees by learning distributed holistic representations for sub-trees. It can also be shown that

these representations do generalise in accordance with systematicity [7].

The Simple Recurrent Network (SRN) has been used widely in connectionist language learn-

ing (as will be discussed in Section 3.4), even though the typical output representations available

preclude the use of parse trees. One approach to extending SRNs to handle structured information

is by including generalised recursive neurons [95]. This extension has been used in encoding net-

works which learn transformations between, and classifications of, instances drawn from various

structured representations [25, 26].

In order to clarify some of the claims for systematicity made by F&P, Hadley [30, 31] proposed

a learning-based definition of systematicity. Later work has developed a connectionist architecture

which learns generalisations in accordance with this proposed definition of systematicity [32, 33].

The architecture relies on a non-standard training algorithm and specific network design to enforce

certain symbolic properties, such as localised activation values and non-distributed internal repre-

sentations, which provide for the types of generalisation being tested for.

30

Figure 2.5: Four types of structured pattern

The final example covered here is that of Shastri and Ajjanagadde [92], who proposed a tech-

nique which directly extends the definition of connectionist networks so as to represent independent

entities; this technique is known as Temporal Synchrony Variable Binding (TSVB). TSVB uses

units which pulse within each time period, so that units pulsing in synchrony can represent features

about the same entity. This use of pulsing units also enables features identified by the network to

refer to other entities, and therefore TSVB networks can represent structured information.

This section contains a summary of these approaches, and suggests that the manner in which

TSVB encodes appropriate generalisations makes it an interesting technique for expanding the

achievements of connectionist networks into higher-level cognitive areas. However, no effective

training algorithm for general TSVB networks has been previously proposed. This lays the founda-

tion for Chapter 4, which considers how a training algorithm for connectionist networks employing

TSVB can be developed.

2.3.1 Structured representations

A structured representation is a complex pattern, such as a list, tree or graph of variable size and

complexity. Domains which require such representations pose two important questions. The first is

the issue of representation. Within the connectionist framework, such as the models contained in the

previous two sections, representations are typically not structured, and so some method is required

for actually handling the information. The second question is that of generalisation. Domain-

specific generalisations can be encouraged by the form of the structure. Ideally a connectionist

network should be capable of recognising and utilising such generalisations where present, espe-

cially as they augment the standard ability to generalise by interpolation. Between them, these two

issues suggest ways in which the connectionist networks from the previous two sections may require

changing in domains requiring the use of structured representations.

Figure 2.5 illustrates four types of structured pattern, based on the admissable set of links be-

tween elements in the pattern. The figure illustrates:

the static pattern Each pattern is a single node containing its label but no links, i.e. each pattern

is a fixed-length vector of real numbers. This form of pattern is handled by the basic feed-

31

forward networks covered in Section 2.1.

the sequence Each pattern is a set of nodes, with links indicating the linear sequence. This form of

pattern is handled by the networks covered in Section 2.2. Examples of the sequence include

sentences composed of words, and lists composed of sequences of primitive elements.

directed acyclic graphs (DAGs) Here, each node may be connected to any other node, with the

restriction that no cycles may be present. A typical example is the tree structure, such as used

for parse trees.

cyclic graphs Here, each node may be connected to any other node without restriction. A typical

example is the graph structure for a complex chemical.

Given these four types of structured pattern, a wide range of possible applications may be de-

fined. Indeed, the four types of pattern permit 16 types of problem. For example, in the word-

prediction task, the SRN maps sequences to single numbers, i.e. sequences ! points. Or in classi-

fying chemical structures, a cyclic input structure must be converted into a numeric output structure,

i.e. cyclic ! point. As will be seen below, different connectionist networks have been developed

for the various types of problem. The interest in this thesis is with natural language parsing, which

requires an ordered sequence of words to be converted into a structured output representation, in

the form of a parse tree, i.e. sequence ! DAG. Accordingly the major connectionist approaches

to handling structure will be summarised below, but the discussion will be biased towards systems

which are closest to the application of parsing.

Before summarising some connectionist approaches to handling structure, it is necessary to

consider the role of domain-specific generalisations. One of the more prominent criticisms of the

connectionist approach has been its ability to handle typical generalisations present in a domain

such as natural language. Specifically, Fodor and Pylyshyn (F&P) [24] introduced the concept of

systematicity, which identifies a class of regularity found in domains such as natural language. The

ensuing debate centred on whether connectionist networks do or do not generalise in accordance

with systematicity. The next several paragraphs review the main ideas behind systematicity, which

will be seen to form a secondary motivating factor in considering the specific use of structured

representations within connectionist networks.

F&P stressed two points which define a pattern of regularities for theories of cognitive process-

ing. The first is that mental representations have a combinatorial syntax and semantics. A repre-

sentation in a combinatorial syntax may be in one of two forms: structurally atomic forms consist

merely of the basic units for the representation, whereas structurally molecular forms consist of

some combination of the atomic forms. For instance, a sentence may be a simple word, ‘Help’, or

a sequence of words, ‘Help is coming’; the former is structurally atomic, and the latter structurally

molecular. In addition, for a representation to have a combinatorial semantics, its semantic content

must be a function of the semantic contents of its syntactic parts and their constituent structure.

The second defining point is that operations on mental representations may be defined purely on the

form of the representation.

These points are illustrated by a generative grammar for simple sentences, e.g. S = N V N.

In F&P’s terms, S is a structurally molecular representation formed by combining the structurally

atomic ‘N’, ‘V’ and ‘N’. If this grammar generates the sentence ‘John loves Mary’ then it must

also generate the sentence ‘Mary loves John’, because “John” and “Mary” are the same type of

constituent. It is also possible to define, for example, the subject of the sentence based purely on the

structure, i.e. the subject of S is the first N.

F&P claim this phenomenon of systematicity is widespread in cognitive processes, and any

theory of cognition must both exhibit and explain it. As expressed by Minsky and Papert [72]:

32

Architecture Approach Type of problem

RAAMs compressor + reconstructor DAG ! point ! DAG

Encoding network generalised recursive neurons cyclic graph ! point

Hebbian learning tensor product sequence ! DAG

SHRUTI temporal synchrony DAG ! DAG

Table 2.1: Summary of architectures considered, listing their basic approach to handling structured

patterns, and the type of mapping between structured patterns

“no machine can learn to recognise X unless it possesses, at least potentially, some scheme for

representing X”. And F&P’s arguments are based on the belief that connectionist networks do not

have the potential for representing X, where X is combinatorial (syntactic) constituent structure,

and hence cannot exhibit (semantic) “systematicity” of thought processes. This claim is strengthed

in Fodor and McLaughlin [23] (emphasis in original):

“the point of the problem that systematicity poses for connectionists ... is not to show

that systematic cognitive capacities are possible given the assumption of a connectionist

architecture, but to explain how systematicity could be necessary – how it could be a

law that cognitive capacities are systematic – given those assumptions.”

The critics require systematicity to be a nomological necessity of a connectionist network and

not merely “wired in”. The difficulty for connectionists is that F&P did not provide a formal def-

inition for systematicity, leading to confusion as to what the networks should be achieving. This

difficulty was addressed by Hadley [30, 31], who gives formal definitions for different kinds of sys-

tematicity, introducing the idea that systematicity is a phenomenon arising during learning. This

idea is important, as connectionist networks are primarily models of learning. In Hadley and Hay-

ward [32, 33] a connectionist network is given which satisfies this definition of systematicity.

Before moving on to some specific proposals which attempt to incorporate structured represen-

tations or an ability to generalise in accordance with systematicity into a connectionist framework,

it is useful to consider the converse view in the language domain. On the issue of systematicity,

Elman has suggested that the emphasis on localist representations and compositional grammars is

misplaced [20]. Instead, the relationship between word meaning and syntactic structure may be less

clearcut than Fodor and Pylyshyn have stated, and some of the generalisation properties they claim

as an aspect of systematicity may arise from other considerations. Elman’s argument is based on the

semantic changes which a word derives from its context. This may be explained by an alternative

linguistic model, which uses the concept of accommodation. Accommodation [58] describes the

context sensitivity of constituents. For example, the meaning of the word “run” when applied to

humans must be adjusted when applied to four-legged animals, such as horses. This adjustment

of constituents is readily modelled by distributed representations, as found in a Simple Recurrent

Network (SRN). A good example of this is found in one of Elman’s experiments [19], where the

precise internal representation of each word reflects the preceding words in the sentence.

Although these arguments are sound, it is still true that a large amount of the information con-

tained within a word should be generalised across contexts, although it should be sensitive to the

local details. In addition, a number of applications for connectionist networks require the ability to

learn about and use more structured representations. Hence, a number of such connectionist archi-

tectures have been developed. A representative sample of these is presented below, and Table 2.1

summarises the type of problem each approach addresses.

33

DCBA

Figure 2.6: Example of a binary tree

right
(b) (c)

k hidden units

2k output units

2k input units

(a)

k input units

2k output units

2k input units

k output units left

right wholeleft

whole

whole

right

left right

left

Figure 2.7: (a) Compressor, (b) Reconstructor, (c) RAAM architectures

2.3.2 Recursive Auto-Associative Memory

The Recursive Auto-Associative Memory (RAAM) [77] is designed to answer the question of how

variable-sized recursive data structures, such as trees and lists, can be represented in fixed-width

patterns. The RAAM automatically develops compact distributed representations for such compo-

sitional structures, as well as providing efficient accessing mechanisms for them.

In order to represent variable-sized symbolic sequences or trees, such as the binary tree illus-

trated in Figure 2.6, in a fixed-width form, Pollack defines two mechanisms:

Compressor which encodes small sets of fixed-width patterns into single patterns of the same size,

so that the pattern (A,B) is encoded as R
1

, the pattern (C,D) as R
2

and (R
1

, R
2

) as R
3

. Note

that the compressor is applied recursively.

Reconstructor which decodes these fixed-width patterns into facsimiles of their parts, and deter-

mines when the parts should be further decoded. Thus, R
3

is decoded to (R’
1

, R’
2

), R’
1

to

(A’, B’) and R’
2

to (C’, D’).

The mechanisms for the compressor and reconstructor are assumed to be multi-layer percep-

trons. Figure 2.7 illustrates (a) a compressor, (b) a reconstructor and (c) a combined compressor

and reconstructor. The actual representations for the binary tree, the R’
i

, are determined by the

multi-layer perceptron itself, i.e. the actual representations are determined during training of the

network to be the most suited for the encoding and decoding operations described above.

As an example, consider the representation of binary trees (which are one example of the more

general class of DAGs referred to earlier). The RAAM is applied recursively as shown in Table 2.2.

If the RAAM converges, then A’ will become the same as A, B’ as B, R’
1

as R
1

and so forth. This

would imply that R
3

would represent ((A, B), (C, D)) because, firstly, the compressor would be a

deterministic algorithm transforming the tree into this representation, and secondly the reconstructor

34

inputs hidden output

A B R
1

(t) A’(t) B’(t)

C D R
2

(t) C’(t) D’(t)

R
1

(t) R
2

(t) R
3

(t) R’
1

(t) R’
2

(t)

Table 2.2: Example of recursive application of RAAM to a binary tree

would be a deterministic algorithm transforming the representation back to a tree. A similar process

is possible with sequences. The process is limited in extent only by the unavoidable inaccuracies in

the equivalence of the quantities A and A’ etc – these representations become equivalent only in the

limit, and therefore infinite trees or sequences cannot be represented.

The interesting quality of the RAAM is that the representation for the binary trees and the mech-

anisms for encoding and decoding trees in this representation co-evolve. The final representation

is trained as a good fit to the two tasks of encoding and decoding. It has also been found that

some generalisation in accordance with systematicity is observed. That is, if the RAAM is trained

to represent trees with constituents within one component of the tree, some generalisation of this

representation to other components of the tree can be seen.

For example, Chalmers [7, 8] showed that the representations of the RAAM could be used

in a further context, by training a feed-forward connectionist network to map between the active

and passive forms of a sentence, based on the compressed representation. Chalmers trained the

compressor to provide a compressed representation for the active form of a sentence, and the re-

constructor to turn this compressed representation into its equivalent passive form. When testing

the networks with novel sentences, generalisation of nouns across syntactic classes was observed.

Chalmers argues that this ability shows how the network can work with semantic representations

without extracting the syntactic constituents; an ability unique to connectionist systems.

In further work with this model, Sperduti has introduced the labelled-RAAM (LRAAM) [94, 95]

which permits labels to appear at the vertices of the learnt structure. In addition, by including a sin-

gle output unit after the compressor/reconstructor, the LRAAM model can be used for classifying

structured representations. This has extended the range of domains to which RAAMs may be ap-

plied.

However, apart from the issue of representation, it is still unclear whether all the natural forms

of syntactic generalisation required for handling language have been captured within the RAAM.

Granted that the systematic substitution of nouns is observed, and some interesting properties of the

connectionist holistic representation have been demonstrated by Chalmers, there is still the question

of whether the RAAM can generalise across parse trees in a natural fashion. For example, given

embedded clauses within a sentence, such as ‘Mary loves John who sees Jane’, it would be attractive

to have a system which could generalise information learned about words in sentences with one

embedded clause to those with more than one embedded clause. With the RAAM architecture, the

nature of the recursive definition of the parse trees would restrict the accuracy of representations

required to generalise to greater embeddings in this fashion. In spite of this, variants on the RAAM

have featured in holistic parsers, which are discussed in more detail in Section 3.4.5.

2.3.3 Encoding networks

Section 2.2.2 discussed the Simple Recurrent Network (SRN) [18, 19] and its Backpropagation

Through Time (BPTT) [85] training algorithm. The idea of BPTT is to unfold the SRN over the

temporal structure of an input sequence. Recurrent links within the SRN pass activation across time

35

(a) Sample graph (b) Unfolded network

a

b c

d

d

cb

a

Figure 2.8: Unfolding a single generalised recursive neuron across a graph

periods. In the folded form of the SRN, this passing of information between time periods is achieved

with context units, each context unit holding the activation of a unit in the previous time period.

A similar process is possible for arbitrary structured representations, but instead of unfolding

over time (i.e. the elements in the sequence), the unfolding is done over structure (i.e. the elements in

the input structure). In this case, BPTT becomes Backpropagation Through Structure (BPTS) [95,

26]. Also required is a change to the definition of the standard recurrent unit so that the recurrent

links within the network extend across structure instead of time.

Sperduti and Starita [95] give a definition of such a unit, the generalised recursive neuron

(GRN). The GRN differs from the standard recurrent unit (as described in Section 2.2.2) in that its

recurrence is used for handling structure in the inputs. Thus, in its unfolded form, separate copies

of the GRN are made for each node in the input structure. Activation is passed between the separate

copies based on the links present between the different nodes in the input structure. This process

is illustrated in Figure 2.8, which shows a sample graph and an appropriately unfolded GRN. The

figure illustrates how one copy of the GRN (the circle) is made for every node in the graph. Dashed

links connect the copies in accordance with the graph structure, and the solid links indicate where

each node’s label is input to the network. Note that the unfolded form is a feed-forward network,

and hence may be trained using backpropagation.

A layer of GRNs can be used in place of the hidden units in a feed-forward network. In this case,

the whole layer of GRNs is copied for every node in the input structure, and the links between the

nodes pass activation from every GRN in the source node to every GRN in the target node. There

is only one limitation to this approach to handling structure, and that is the assumption that every

structure have a source (or root) node; this limitation is circumvented by algorithms, as described

in [95], to add such a node to any structure without one.

Sperduti and Starita [95] discuss a number of training methods for networks using GRNs: the

simplest being BPTS. There are two cases to consider. In the simpler case, where the input structure

does not contain cycles, the unfolding process described above yields a feed-forward network. This

network can be trained using standard backpropagation although, just as with BPTT, the separate

copies of each weight must be made to agree with each other by adding together all the separate

weight changes. In the more complex case, the input structure may include cycles, and so the above

unfolding will not produce a feed-forward network. In this case recurrent backpropagation must be

used, and details of this algorithm’s application to GRNs is contained in [95].

The approach of GRNs is attractive in the way it redefines the SRN to handle structured repre-

36

NP -> N | N RC

S -> NP V NP

RP -> who

RC -> RP V NP

N -> Mary | Jane | Sally | Susan | Vicky | Fran | Abe

 | Bill | Carl | Dave | Earl | Fred

V -> likes | knows | treats | calls | draws | helps | races

 | sees

Figure 2.9: A recursive grammar

sentations. An arbitrary structured instance may be input to the network and a classification made

based both on the content of the items within the structure, as well as the form of the structure itself.

The class of applications for GRNs includes the classification of an input structure [95, 25] or con-

version between equally structured representations [26]. Unfortunately, as the conclusion of [26]

makes clear, these networks rely on the input and output structure being identical, which prevents

them being applicable to the task of learning to output parse trees for a sequence of words.

2.3.4 Hebbian connectionist learning

Hadley and Hayward [32, 33] present an interesting connectionist architecture based on Hebbian

learning. The network is designed to capture generalisations in accordance with a learning-based

definition of systematicity known as strong semantic systematicity.

Strong Semantic Systematicity

Hadley [30, 31] defined strong semantic systematicity as a property of a network which can assign

appropriate representations of meaning to novel sentences (both simple and embedded); a novel

sentence is one which contains words in syntactic positions they did not occupy during training. For

example, if a network is trained to identify the word “Mary” with the meaning “MARY” on a set

of sentences in which “Mary” only appears in the subject position, strong semantic systematicity

requires the network to assign the meaning “MARY” to the word “Mary” when used in the object

position of a test set. Therefore, sentences of the form ‘Mary loves John’ can be used to train the

network that “Mary” ! “MARY”, and this should be generalised to sentences of the form ‘John

loves Mary’ or ‘John loves Jane who knows Mary’.

This section continues with a description of a recursive grammar, which can be used to test

for this property. This is followed by a discussion of the network structure and training algorithm.

The experimental results obtained by Hadley and Hayward demonstrate their claim that the network

satisfies the requirements of strong semantic systematicity.

Recursive grammar

Hadley and Hayward [32, 33] base their experiments on the context-free grammar of Figure 2.9.

Example sentences are: ‘Mary likes Bill’, ‘Mary who calls Susan likes Bill’, ‘Jane who calls Vicky

knows Mary who likes Bill who helps Jane’ etc. A parse tree for this last sentence is given in

Figure 2.10. Note that the sentence begins with a symbol ‘<start>’, which is used to introduce the

sentence to the network, resetting activations where appropriate.

An embedding is a phrase such as ‘who calls Vicky’ which interrupts the simple sentence ‘Jane

knows Mary’. A multiple embedding occurs if the noun in the relative clause is followed by a

37

likes Bill who helps JanewhowhoJane calls Vicky knows Mary

S

V

N

V N

R

RN

R

V

N

V

N

<start>

Figure 2.10: Parse tree for an embedded sentence

further “who”, e.g. ‘who likes Bill who helps Jane’. The complexity with this grammar lies in the

possibility of multiple embeddings; there is no simple prediction, in terms of the number of words,

of where the main verb is in a sentence. The multiple embeddings introduce a potential confusion

in labels. When parsing the word “helps” in Figure 2.10, a decision is needed as to which relative

pronoun it modifies. Three relative pronouns have been introduced at this stage, and the network

representation must distinguish between them.

To test for strong semantic systematicity, a network is initially trained on a restricted sample

of the sentences which may be generated from this grammar, and then tested on a broader sample.

One demonstration of strong semantic systematicity involves training on sentences which have no

embeddings, or a maximum of one. Further, the nouns within these sentences are restricted so that

only one-third appear in all noun positions, one-third in only the subject position, and one-third in

only the object position. Testing the network will involve increasing the number of embeddings the

sentences may include (e.g. up to a maximum of three), and allowing all nouns to occupy the subject

or object position without restriction. Therefore, the network will be tested on a significant fraction

of nouns in syntactic positions which they did not occupy during training.

The experiments therefore test for the presence of two specific types of generalisation:

Substitution-type generalisations arise when nouns which appear in restricted syntactic positions

of the training set appear in novel positions in the test set. The network is therefore tested on

its ability to learn a class description, such as “noun”, from instances of nouns, and substitute

different members of this class at syntactic positions where one instance from this class has

previously been observed.

Recursive-type generalisations arise when the level of embeddings is increased in the testing set

relative to the training set. The network is tested on its ability to generalise from the attach-

ment of a relative clause to a particular noun in the training sentences to attaching a relative

clause to nouns of a more general description in the test set.

38

Mod-pNode

Core

γα β

Master pNode

MarylikesBillseesJane

(c)
π Core

γα β

SiteSiteSite

Core

γα β β

SiteSite

Core

γα

Site

(b)(a)

Site

π

Figure 2.11: Representation of Hebbian connectionist network

A connectionist solution

Hadley and Hayward [32, 33] present a connectionist network which generalises learned infor-

mation in accordance with strong semantic systematicity. Their approach combines connectionist

methods with the classical insight that activating complex semantic representations entails activating

their semantic constituents. The principal features of their model being:

� the model exhibits strong semantic systematicity,

� in training, two-thirds of nouns are not presented in all legal positions,

� the network is trained on a small subset of the possible corpus,

� training uses a variant on unsupervised Hebbian learning,

� after training, the behaviour of the network is transparent.

This section continues with a discussion of their model and training algorithm, and ends with results

of their experiments with the recursive grammar from the previous section.

The network is designed to activate the semantic representation of a sentence, such as ‘Jane sees

Bill who likes Mary’, when the words are presented on its input units. The overall structure of the

network is, therefore, an input layer and a semantic (output) layer. The input layer is a linear array

of 21 units, each unit corresponding to a single word. When a word is input, the corresponding unit

is activated. The semantic layer, however, has considerable structure, and is composed of several

types of unit.

The semantic layer is made up, primarily, from one ‘Master pNode’, as in Figure 2.11(a), and

three ‘modifier pNodes’, as in Figure 2.11(b). The Master pNode is designed to represent the main

proposition expressed by a complete sentence. In training and testing, its core becomes active to

indicate that the Master pNode is the current proposition of the sentence under consideration. Its

39

sites become bound to the constituents of that proposition; thus there are three sites, � for agent,

� for action, and for patient. The modifier pNodes are designed to represent the subordinate

proposition(s) expressed by a complete sentence, and have a similar structure to the Master pNode.

Modifier pNodes have an additional site, �, which indicates a modifier site. Each site in the Master

and modifier pNodes is known as a thematic site, because it identifies the thematic role of any bound

word in the proposition.

Between the input and semantic layers there are two sets of connections: firstly, every input

unit connects to the core of every pNode, and secondly, there is a layer of concept units. Every

input unit connects to every concept unit. Connections between the concept units and thematic

sites are mediated by binding units, which convey activation from the concept unit to the site unit.

Concept units fall into two types, representing either actions or objects. The ‘action concept units’

are connected to every ‘action thematic unit’, and no other, i.e. every � site in the master and

modifier pNodes. Similarly, every ‘object concept unit’ is connected to every ‘agent or patient

thematic unit’, i.e. every � or site in the Master and modifier pNodes.

There are two aspects of the model of special interest from a connectionist perspective. The

first is that the site units within each pNode form a competitive winner-take-all cluster, although

the necessary inhibitory links remain at the virtual level (and are not shown). This means that,

when deciding whether an input word could be bound to the agent or patient site, the one with the

greatest activation ‘wins’, and the word is bound solely to that unit, leaving the other free to make

another binding at another point. This implies that activation is only passed to this ‘winning’ unit,

and not to any other. Similarly, the binding units compete with each other in trying to make the

appropriate binding between the concept units and thematic sites. The second aspect of the model

of interest is that, once a binding unit has entered into a binding, the concept and thematic sites it has

bound ‘drop out’ of any subsequent competitions. Therefore, the model has built-in mechanisms for

ensuring a localist representation of units is maintained, i.e. activation is not shared between units,

but is restricted to the ‘best’ unit. Further, the binding units provide a mechanism for indicating a

relationship between pairs of units. It is this enforced localist representation and clearcut binding

mechanism which makes the network’s behaviour transparent.

Figure 2.11(c) depicts the network after the sentence ‘Jane sees Bill who likes Mary’ has been

presented on the input units. The diamond-shaped boxes indicate a binding from an input unit,

through a concept unit, to a site unit. The Master pNode is shown with “Jane” bound to its agent

site, “sees” to its action site, and “Bill” to its patient site. The modifier pNode has its modifier and

agent sites bound to “Bill”, which reflects the subordinate nature of the phrase ‘who likes Mary’ on

“Bill”. The modifier pNode’s action and patient sites are bound to “likes” and “Mary” respectively.

Before considering the training of the network, we must first understand how a sentence is

presented to the network. When each word of a sentence is presented, the corresponding input unit is

activated. During presentation of a sentence, the Master pNode core is activated, to indicate that this

is the proposition whose meaning is being considered. During training, this activation is enforced;

once trained, the links from the input units to the pNode cores ensure the pNodes are activated

during presentation of the input. If the sentence uses relative clauses, introduced by “who”, then the

modifier pNode core will be activated; for each relative clause, one of the three modifier pNodes will

be selected at random for inclusion in the representation (the number of available modifier pNodes,

three, is the restriction on the maximum number of embedded relative clauses any sentence may

have).

Weighted links convey this activation between the core and sites in the pNodes, between the

input units and pNode cores, and between the input and concept units. The binding units carry

activation between the concept units and sites. A winner-takes-all competition within each layer

ensures that only one concept unit and one site unit will predominate, bound by the binding unit.

The trainable links are therefore those between the input and concept units, the input units and

40

pNode cores, and between the core and site units within each pNode.

The links are trained using a variant on Hebbian training. Hebbian training updates the weight

of a link based upon the activation of its source and destination units, tending to strengthen weights

between simultaneously active units, and thereby discovering the strongest correlations. In this

context, because spurious semantic units may become active during training, substantial weights

may form for spurious correlations. Therefore, a better method is to integrate Hebbian learning

with a simple form of competition.

The method used assumes that there is a fixed maximum (+1) for the sum of all weights on

those links incoming to each unit. The initial value of the weights on these links is 0.001 (or a

small random number). The weights are incremented on every link which connects that unit to an

active unit. This occurs whenever there is an active input. The weights on each unit are incremented

according to the following formula:

� =

w

w

� 0:0005

where w is the weight of the link,

w is the average of the weights on incoming links to the unit,

0.0005 is a constant ensuring gradual learning

The ratio of the current value of the weight to the average of the weights ensures that ‘above

average’ weights are rewarded. Therefore, as learning progresses, the winning links will accelerate

their learning, and little weight is assigned to links reflecting spurious correlations. Also, if a unit

has a number of equally significant correlations, none of the links predominates, as the ratio of

each weight to the average remains near unity. Training is halted when all units have reached their

maximum weightings, i.e. for every unit, the sum of weights on all the incoming links is 1.

The performance of trained networks as reported by Hadley and Hayward are very good. Sen-

tences were formed as described above, so that the training set of 1370 sentences was formed from

75% of simple sentences, having no embedding, and 25% of complex sentences, having a single em-

bedding. Additionally, two-thirds of the nouns were not presented in all legal positions, i.e. some

nouns only appeared in the subject position of the sentence, and some only in the object position.

Training typically finished before the first pass of the training set through the network was complete.

The network was tested on sentences using nouns in all legal positions, and, most importantly,

with sentences extending to more than one embedding. The network performed perfectly on all the

test sets, and this performance was confirmed for a number of different training sets. Therefore, the

claim of Hadley and Hayward that their network satisfies strong semantic systematicity is justified.

Discussion

Hadley and Hayward [32, 33] have used a learning-based definition of systematicity, termed strong

semantic systematicity, and have presented a network which generalises in accordance with this

definition. Aizawa [1] addresses the question of whether this network counters the claim of Fodor

and Pylyshyn [24] that connectionist networks cannot represent facts according to systematicity.

The two sides of the debate can be characterised in that the connectionists are happy to exhibit a

network with the desired property, whereas the critics require an explanation which is inherent to

the definition of connectionism.

The criticisms rest upon the need for a connectionist network to be ‘wired’ to perform a partic-

ular function. The architecture selection and training mechanism for adjusting the link weights are

integral elements of the connectionist framework. The justification for using a particular architec-

ture and a particular training mechanism lies on empirical evidence, and not theoretical superiority.

41

Aizawa focuses on this element of choice. For example, if the precise form of Hebbian learning

used by Hadley and Hayward was altered, the properties of the network would change. Similarly, if

the nature of the competition between the binding units was altered, so would the properties of the

network. And these changes would remove the ability of the network to manifest the property of sys-

tematicity. For systematicity to be a nomological necessity, such small implementational changes

should not affect the presence of such a fundamental principle. Instead, systematicity should be

present in the theoretical framework from which the learning algorithm derives.

A further criticism is that the network is preconfigured to work with one particular semantic

representation of sentences. The construction of the pNodes, both master and modifier, is fixed from

the start, and cannot be altered to match the training set. It would be a complex problem to extend the

semantic representation to cover a large subset of natural language. Notable is the use of an ‘object

concept node’ which is the source of the binding for any ‘agent’ or ‘patient’ thematic site. Any

word which is an agent or patient of a sentence will activate an object concept node, and naturally

generalise to the other kind of thematic site. According to Aizawa, the amount of structure within

the network makes this architecture more classical than connectionist, as the network behaviour is

sensitive to the structure of its representation; learning only alters the sequence in which the various

constituents become active, to agree with the training set.

Hadley and Hayward argue that the structure and learning procedures of the network would, in

a physical brain, have been evolved. Systematicity being a useful property, evolution would explain

how a model capable of exhibiting that property does in fact possess it. Unfortunately, this argument

is too powerful, as it may be used to explain almost any form of network with the desired property.

This proposal therefore does not address the demand of the critics for an explanation for the property

of systematicity inherent to the connectionist framework.

To conclude this section on Hadley and Hayward’s model, the following points should be noted:

� Complex nodes are used for specific semantic properties and propositions.

� Substitution-type generalisation is achieved because the agent and patient sites in the pNodes

are connected to a single ‘object concept node’. Therefore, all words which can be an agent

in the sentence, are also possible patients. Words where this is not the case, such as “he” or

“her” must be treated by separate types of node.

� Recursive-type generalisation is achieved because there exist three banks of modifier pNodes,

which enforce a limit to the number of embeddings which the system can represent. Gener-

alisation across these three embeddings is achieved by the process of selecting at random the

next modifier pNode to use. This naturally leads to problems if the number of embeddings

can become larger (for instance, in a right-branching structure), and also leads to potential

difficulties with sparse data problems; three copies require three times as much training for

the same information to be encoded on every copy.

� The architecture and training mechanism are non-standard, in the wider field of connection-

ism, and it is unclear how these may be extended, not only to a wider linguistic capability, but

also to other applications.

2.3.5 Temporal Synchrony Variable Binding (TSVB)

The connectionist networks described so far in this chapter have used the activation of individual

units to represent features. For example, a unit labelled ‘subject’ will use an activation of 0 to

represent the feature ‘not subject’, and an activation of 1 to represent ‘is subject’. Missing from

this representation is any means of identifying which entity the feature is referring to. This is

an important limitation to the possible representations offered by connectionist networks, because

42

such an identification underlies any ability to output structured information. The “binding problem”

arises where it is necessary to represent multiple entities and multiple properties: a mechanism is

required to represent which properties are bound to which entities. For example, on seeing two

objects with the properties red, green, square and circle, some mechanism is needed to indicate

which colour relates to which shape. One method is to provide for variables x and y to stand for the

two objects. The scene may then be unambiguously described as: red(x) ^ green(y) ^ square(x) ^

circle(y).

In this section an extension to the standard connectionist framework is described which uses a

different mechanism to solve this binding problem. The solution described here uses the synchrony

of activation pulses to represent entities; if two units are pulsing synchronously then they are rep-

resenting properties bound to the same entity. This proposal was originally made on biological

grounds by Malsburg [99]. Shastri and Ajjanagadde (S&A) [92] developed a computational imple-

mentation of the same ideas, which they termed Temporal Synchrony Variable Binding (TSVB). Us-

ing this implementation, S&A constructed a connectionist model of reflexive reasoning, SHRUTI,

which represented dynamic variable bindings as the synchronous firing of appropriate nodes in a

network, and used these bindings to rapidly make a range of inferences from a large body of back-

ground knowledge.

This section explores the basic principles required to implement TSVB connectionist networks,

and discusses some of the advantages such a representation confers in terms of an ability to auto-

matically make certain generalisations.

Basic principles behind TSVB

TSVB is a mechanism for enabling features to identify which entity they are referring to by using

the temporal synchrony of unit activations. The implementational requirements of this mechanism

are encapsulated in the following three principles:

� Each time period is divided into discrete phases, each phase to represent a distinct entity.

� Pulsing units compute within each phase independently of other phases, and so compute

information about distinct entities.

� Non-pulsing units compute across all phases, combining information about several entities.

S&A, in SHRUTI, provide one implementation of these ideas in a connectionist model of sym-

bolic reasoning. Because S&A’s primary concern is an ability to do symbolic reasoning, the model

cannot learn and all features are assumed to be true (activation 1) or false (activation 0). S&A define

several types of unit, but the two which most closely fit the pulsing and non-pulsing units described

above are as follows:

�-btu A binary-threshold unit has an activation of 1 if, in the current phase of the previous period,

the number of active inputs equals or exceeds the threshold, otherwise its activation is 0.

For example, a �-btu unit with three inputs, a, b, c and a threshold of 2 will behave as in

Figure 2.12(a). The output is active in phase 1 of period 1 because a and b were active in

phase 1 of period 0 etc. This type of unit is a ‘pulsing unit’, because its output holds for a

single phase only.

� -or A temporal-or unit is a ‘non-pulsing unit’. Its output in the current time period is a 1 if the

number of active inputs in the previous period, irrespective of phase, equals or exceeds its

threshold, otherwise activation is 0. For example, a � -or unit with three inputs, a, b, c and a

threshold of 2 will behave as in Figure 2.12(b).

43

1 2 3

a

01 2 3 4

b

(b)(a)

time time

a

c

output output

c

b

0 4

Figure 2.12: (a) Behaviour of a �-btu unit. (b) Behaviour of a � -or unit.

432

Has_Subject

Object

time

Mary(y) & Noun(y) & Object(y)

In the second time period, it adds:

John(x) & Noun(x) & Subject(x) & Has_Subject

the network represents the proposition:

In the first time period

Subject

Noun

Mary

John

Figure 2.13: A network trace.

The use of synchronous activation pulses to bind features to entities can be illustrated with a

simple example. Figure 2.13 shows a trace of activation values within such a network over two

time periods. The network is parsing a sentence such as ‘John loves Mary’, and only the nouns

are shown. For the two time periods, two phases are shown, illustrating the subdivision of periods

into phases. “John” has been input in the first phase in the first time period, and “Mary” is input

in the second phase of the third time period. Each of these words has the feature “noun”, and

so activation appears on “Noun” in synchrony with that on “John” and “Mary”. “John”, as the

first noun, is further described as a “Subject”, and “Mary”, as the second noun, is the “Object”.

The synchronicity of the pulses makes it clear that the feature “Subject” refers only to “John”, and

“Object” only to “Mary”. Therefore illustrating the property that the temporal dimension allows

features to identify the entity (or word) they describe through synchronicity of activation pulses.

Finally, the feature “Has Subject” is an example of a global feature. It does not describe any entity

in particular, but is true for all entities, and therefore its activation is true across the entire time

period. Such features are necessary to pass information across phases. The last point to note is that

no information is supplied by the position of the phase in the time period, or its relative ordering to

other phases; it is only necessary for “John” and “Mary” to be allocated distinct phases for features

to distinguish between them.

The use of time to represent variable bindings, and the ability to represent logical proposi-

tions with the �-btu and � -or units, mean that a wide range of complex symbolic systems can be

implemented in a TSVB connectionist framework. S&A proposed SHRUTI, a model of reflex-

ive reasoning, to demonstrate how a large number of inferences can be made in parallel from the

knowledge held in a background database. The speed with which an appropriate inference can be

made from large amounts of background information using this system offers a plausible model of

reflexive reasoning. This representational power has also been used to construct a parser for natural

language [37], a model discussed in more detail in Section 3.5. However, neither of these models

uses trainable TSVB networks, and this is because the implementation of TSVB in terms of binary-

44

threshold units does not enable standard connectionist training techniques such as backpropagation

to be applied. Instead, Shastri [91] provides a trainable architecture for SHRUTI based on the

GRADSIM algorithm [100], which learns relational rules from a toy domain. The next chapter will

describe a novel implementation of TSVB enabling standard connectionist training algorithms to be

used. Before considering this, one important benefit of the use of TSVB must first be discussed.

Inherent generalisations in TSVB networks

The implementation of TSVB networks in [92] and [36], uses TSVB networks as an implemen-

tation of equivalent symbolic systems: systems for representing and manipulating structured in-

formation. This representational ability, however, is not specific to TSVB networks. Tesar and

Smolensky [98] argue that TSVB can be interpreted as an implementation of tensor product vari-

able binding (TPVB), using time rather than space. The use of TPVB has already been illustrated

in Section 2.3.4 with the discussion of the Hebbian network of Hadley and Hayward [33]; their

binding units mediate between the concept and action nodes, and so represent the relevant variable

bindings. As was pointed out by Henderson [37], this equivalence between TSVB and TPVB is

true only in the context of static representations. When learning is taken into account, the use of

TSVB means that information learned about an entity in one binding is inherently generalised to

other bindings of that entity, while this is not true of TPVB.

For example, consider a TSVB network parsing the sentence ‘John loves Mary’. The word

“John” is the subject of the sentence, but is also a noun. Within the TSVB network, this binding is

represented through temporal synchrony, i.e. the unit which represents “John” as a noun is active

in synchrony with the unit which represents “John” as the subject; this is illustrated in Figure 2.13.

Because computation is performed in the network by passing activation along the links in the net-

work, the computations leading to these facts will be the same at all times, because the same link

weights will be used. Thus the computation which leads to “John” being described as a noun will

occur independently of the other features bound to the same phase, such as whether “John” is the

subject or object. In other words, learned information is independent of variable bindings, and is

therefore inherently generalised across all entities in the network. As Henderson [37] has shown,

this generalisation ability explains, to a large extent, the properties of systematicity argued for by

Fodor and Pylyshyn [24] and elaborated by Hadley [30, 31].

By contrast, with TPVB, links trained between the word and its binding unit will not gener-

alise to links between that word and other binding units. As discussed in Section 2.3.4, Hadley and

Hayward [33] include special mechanisms within their architecture (competition between units, ran-

dom selection between binding units, and the “drop-out” of bound units from future competitions)

to ensure that the binding units operate as variable bindings with the appropriate generalisations.

Looking ahead to the TSVB networks defined in Chapter 4 of this thesis, in Section 4.2.2 the net-

works are tested on the same recursive grammar as that used in Section 2.3.4 for testing the Hebbian

network. Comparing the results, it is evident that, although the TSVB network and Hadley and Hay-

ward’s architecture provide for equivalent abilities, TSVB networks do so with a more parsimonious

architecture.

2.3.6 Comparison

Given the above approaches to handling structure within connectionist networks, it is time to con-

sider their potential for natural language parsing. The first point to note is that there is a difference

between handling structured information on the input and generating structured information on the

output. For parsing, it is necessary to map an input sequence of words into a parse tree, which is a

mapping from a sequence to a form of directed acyclic graph, i.e. sequence ! DAG. As is apparent

45

from Table 2.1, the only architecture that directly handles problems such as parsing is the Hebbian

connectionist network [32, 33]. However, this model is limited in its generality by the large amount

of internal structure required for handling even a small range of sentence types. The RAAM class of

models is a further possibility, capable of packing an arbitrary input structure into a distributed rep-

resentation, and later unpacking that representation into a possibly different structure. In spite of the

additional burden of creating this third representation, the RAAM has proven a popular model for

parsing, as is discussed in Section 3.4.5, although their success has been confined to rather limited

toy grammars. In addition, the need to pack the output parse tree into a distributed representation

requires the parse tree to be represented in sequential form. This causes limitations in the form of

parse tree, e.g. to being of fixed valency [42], as well as in the ability of the network to recognise

structural regularities due to their implicit encoding within the representation.

The introduction of Temporal Synchrony by Shastri and Ajjanagadde [92] has led to some im-

plementations of powerful symbolic systems [36, 92]. The technique additionally holds the promise

of satisfying the dictates of systematicity [37] whilst maintaining many of the standard training and

definitional practices of the connectionist community. This is particularly the case because the use

of phases within such a network means that the structural properties of the output can be repre-

sented independently of the information about particular nodes within that structure, which may be

held in the usual distributed activation across units. However, SHRUTI [92] has only been trained

in a limited domain [91], and that with a highly structured architecture and non-standard training

algorithm. Chapter 4 therefore considers TSVB further and develops a novel implementation with

a view to constructing an appropriate training algorithm. This has the dual motivation of providing

an effective training algorithm for TSVB networks, as well as developing a suitable model for the

task of learning to parse.

The preceding material has considered a number of networks for handling structured repre-

sentations. However, there is a wider range of connectionist style models for handling structured

representations, better described as hybrid models because they incorporate elements from both

connectionist and symbolic approaches [66]; hybrid models form an interesting alternative to the

purer connectionist models considered within this thesis ([101] contains an up-to-date summary of

such approaches). As an example, one of the more important sources of structure in AI and cogni-

tive theories has been that of the schema or frame [71]. Essentially the schema provides a definition

of a concept or rule which contains symbolically defined information, such as instantiated attributes.

Sun [97] provides a computational implementation for symbolic structures such as schemata. In-

cluded in the implementation are mechanisms for representing dynamic variable binding and super-

and sub-structures. However, the implementation suffers from being just that, an implementation

of a pre-existing rule set into a connectionist framework. Therefore, just as with SHRUTI [92],

although it is demonstrated that a connectionist network can handle large amounts of structured

information, no satisfactory algorithm has been proposed for how the network could obtain that

information from a training set.

2.4 Conclusion

This chapter has described connectionist networks in terms of three broad classes of problem.

Firstly, the standard feed-forward networks, appropriate for learning about static patterns. Then

the recurrent and time-delay networks, which could learn about patterns extending across time. Fi-

nally, a broad range of networks for addressing the problem of representing structured information,

or multiple entities, within a connectionist framework.

In order to apply connectionist networks successfully to learning in complex domains such as

natural language processing, all three of these problem classes must be addressed. However, as

46

shown by Table 2.1 and the discussion above, no suitably general architecture has been proposed

which successfully combines all these properties. This theoretical finding is reinforced in the next

chapter where a number of approaches to parsing are considered, with the approaches drawn from

classical symbolic, statistical and connectionist frameworks. The fact that connectionist networks

do not learn to parse in comparable fashion to statistical parsers may be attributed to their poorer use

of appropriate representations. This problem is addressed in Chapter 4, where two of the approaches

described in this chapter are combined to form a new trainable connectionist network. These are

the Simple Recurrent Network (SRN) and Temporal Synchrony Variable Binding (TSVB). These

particular extensions have been chosen because they are indeed extensions to the basic feed-forward

connectionist network. Therefore, greater power can be expected from a connectionist model incor-

porating them both.

The SRN is a network which can learn about patterns across time. It consists of a feed-forward

network, which can learn about static patterns, augmented by the addition of context units. As was

shown in Section 2.2, this approach is more powerful than Time Delay Neural Networks, because

it can generalise in testing to sequences with dependencies of greater length than those used during

training. The SRN also has a simple training algorithm which is applicable to arbitrary lengths of

input sequence.

In a similar vein, TSVB is the most attractive of the various approaches for representing enti-

ties within a connectionist framework. For instance, where other approaches, such as the RAAM

architecture, rely upon an encoding of the structure of a sentence within a standard connectionist

representation, TSVB extends the definition of connectionist units to include a further dimension,

time. Not only can a TSVB network convey information by activating a specified unit within the

network, it can also convey information by controlling the time of its activation. This provides

the considerable potential to not only learn about structured information, but also to inherently

generalise information across that structure. The nature of TSVB’s use of temporal synchrony for

handling structure should be distinguished from the use by encoding networks [95] of the gener-

alised recursive neuron: encoding networks handle an input structure, temporal synchrony is used

both to accept and to output structure.

Although SHRUTI [92] has been trained in a limited domain [91], its architecture is still highly

structured and relies on a non-standard training algorithm. The primary contribution of this thesis

is contained in Chapter 4, with a demonstration of how TSVB units can be redefined in a standard

connectionist manner, and then added to the architecture of an SRN. This new implementation of

TSVB produces a range of network architectures which inherit the training algorithms and accumu-

lated experience of standard connectionist practice, but with the added bonus of structured output

representations. But before doing this, it is necessary to examine earlier work in parsing and so

understand the ability and limitations of current systems for learning to parse.

47

Chapter 3

Previous Work on Parsing

One of the fundamental problems in applying computers to natural language is the inherent com-

plexity of speech, the raw physical medium of human language. In order to begin, it is necessary to

decide where on the spectrum of possible ‘natural language processes’ the computer model is to lie.

Work has been done through the entire spectrum from the extraction of phones from sound [82], to

the ordering of documents relating to their semantic content [51].

In this thesis, the use of natural language as an application for Simple Synchrony Networks

(SSNs) is motivated mainly by the desire to test the SSN on a real world problem requiring the

output of structured information. The task is to learn a mapping from a sentence, presented to

the computer as a sequence of discrete words, to a representation of its syntactic structure, in the

form of a parse tree. Although this treatment of language may be criticised as a cognitive and

linguistic over-simplification, there are some points in its favour. Firstly, a large amount of stored

information is in textual form, and it would be useful to have robust computer models for extracting

its structure. Secondly, it may be argued that the inherent complexity in understanding language is

contained precisely at this level of processing sentences to extract their structure, and so a computer

model of learning to extract such information would be of interest to linguists. And finally, it has

become a standard task for the statistical language community, and so is a suitable one for the SSN

to demonstrate its potential for connectionist language learning; if this potential is realised, then the

cognitive or linguistic plausibility can be developed.

This chapter discusses some previous work on parsing, and begins with a description of the

problem of parsing. The earliest attempts at parsing involved constructing a symbolic processor for

applying a set of grammatical rules which transform a sequence of input words into a parse tree.

These parsers are typified by the PARSIFAL model of Marcus [63], and are discussed in the second

section. The symbolic-style parsers had one major failing in that they rely on a pre-programmed

set of grammatical rules. The most successful parsers which learn their parsing knowledge from a

set of pre-parsed examples are found in statistical language learning, and a typical example is the

Probabilistic Context-Free Grammar (PCFG). Statistical models of learning currently predominate

in the area of natural language learning. Their strength rests on an appropriate representation of

the grammar of a language combined with a careful collection of relevant statistics. The third

section addresses a range of connectionist techniques for language learning, mostly based around

the Simple Recurrent Network (SRN), as described in Section 2.2.2. The SRN is a popular choice

for connectionist language learning because the SRN can learn to recognise patterns across time.

In addition, the SRN forms the architectural framework of the SSN developed in this thesis, and

therefore the ability of the SRN in acquiring complex representations for natural language should be

considered before observing the benefits of adding Temporal Synchrony Variable Binding (TSVB).

Finally, this chapter describes a parser for TSVB connectionist networks developed by Hender-

son [36]. This parser uses a TSVB connectionist network to encode rules of sufficient form and

48

prep

In

det

the

np

pp pp

vp

s

s-maj

npnp

.

adj

fake

noun

property

noun

hotel

det

the to

noun

visitors

fpuncprepaux

was

verb

sold

Figure 3.1: A syntactic structure.

complexity for parsing a significant subset of English. This demonstrates that TSVB networks have

the representational power, in principle, to learn to parse samples of natural language. However,

the ability of the SSN to achieve this representational promise is a function of the efficiency of its

training algorithm and the quality of the input data.

This chapter therefore sets out to describe the current abilities of learning algorithms within the

area of language parsing, and also establish the promise of TSVB networks for this task. The next

chapter develops the SSN model, and then Chapter 5 describes experiments applying the SSN to

learning to parse natural language.

3.1 The Problem of Parsing

Parsing is the process by which a sentence is converted into a hierarchical representation of the

various relations between words within the sentence: this hierarchical representation is known as a

parse tree. The parse tree is a representation of the syntactic structure which a parser extracts from

a string of words. The parse tree is intended to contain much of the information which a human

speaker appears to recognise in a given sentence such as: which noun phrase is the object of the

main verb, and which noun does a given prepositional phrase modify. An example of a parse tree is

given in Figure 3.1 (taken from [9]). The words for the sentence appear at the base of the tree, and

each has an associated word-tag (or terminal symbol). The internal nodes of the tree identify the

constituents forming the hierarchical structure of the sentence.

Some of the knowledge about this sentence represented within the parse tree is that: “in the

hotel” does not modify “property” but “sold”, “the fake” modifies “property” and not “hotel”, and

the “visitors” were buying property, not selling it.

The problem of learning to parse may be defined as follows. Given a set of training examples,

consisting of sentences and their associated parse trees, formulate a mapping between the two so

that parse trees may be constructed for novel sentences. The actual form of the mapping varies

depending on the underlying representation used for the parse tree, and how the parsing process

49

itself uses this representation in conjunction with the input sentence to produce an output.

Two distinct strategies may be identified. First, and most popular within the psycholinguistic

tradition, has been an incremental strategy. In this case, the parse tree is created as each word is

input (e.g. see [27, 50]), and the ability to backtrack to recompute earlier parts of the parse tree

is restricted. PARSIFAL [63], considered below, is a classical example of a parser following this

tradition. This incremental approach to parsing is attractive because it allows the meaning of the

sentence to be calculated as the sentence is heard. However, not all sentences can be parsed without

requiring information about later words to correctly categorise the current word.

The second strategy is to read the whole sentence into the parser’s internal representation, and

then compute an output parse tree from this representation. This approach is adopted by the holistic

parsers [44] discussed below in Section 3.4.5. It has the disadvantage of not directly relating to

psycholinguistic ideas of incremental processing. To its advantage though, this approach creates its

parse tree from all the information available in the sentence. In addition, other forms of output may

be generated from the same internal representation. For example, conversion may be made between

active and passive sentence types [7, 8], or even between languages [14].

3.2 Symbolic Parsing: PARSIFAL

PARSIFAL [63] is an example of a classical parser motivated by considerations of syntactic compe-

tence. Previous parsers had adopted a highly search-oriented process, necessitating large amounts

of backtracking (e.g. Augmented Transition Networks [106] and discussion in Chapter 6 of [2] and

Chapter 9 of [105]). The major contribution of PARSIFAL was to substitute a limited amount of

look-ahead for this search process, accepting that sometimes this process would lead to mistakes;

the sentences that were misparsed could then be compared with those which humans have difficulty

with, and so lead to tests of the parser as a model of syntactic competence.

PARSIFAL consists of three major elements. A buffer contains a set of input words, the parse

stack maintains a list of constituents which the parser is currently processing, and the rule-set con-

tains the set of operations which the parser can apply to the information within the buffer and parse

stack. Three basic operations may be applied by the rule-set. These are to create a new node on

the parse stack, to attach an input constituent to the top node of the parse stack, and to drop the top

node of the parse stack into the buffer.

The limited look-ahead employed by the parser is due to its ability to use the first three words

on the input buffer when determining which rule to use from its rule-set. This allows PARSIFAL

to dispense with search, although certain sentences, in which the necessary information is beyond

the three-word horizon, will not be parsable. Such examples include the familiar garden-path sen-

tences, in which an initial sequence of words may form part of a question or imperative, e.g. ‘Have

the students who missed the exam take it today’, ‘Have the students who missed the exam taken it to-

day?’ [2]. The claim of PARSIFAL is that the problems caused by the limited look-ahead within the

parser are analogous to the difficulties observed in humans processing the same sentences, making

PARSIFAL an interesting model of syntactic competence.

3.3 Statistical Learning: Probabilistic Context-Free Grammars

The Probabilistic Context-Free Grammar (PCFG) is an example of a parser taken from statistical

language learning. In Chapter 1 some of the differences between statistical and AI learning tech-

niques were discussed. The most important of these being the emphasis of statistical learning on

performance, with the consequence that statistical techniques tend to be specialists at their target

domains. PCFGs provide simple statistical models of natural language and their parsing schemes

50

Non-terminal (symbol) Examples

major sentence (s-maj) ‘In the hotel the fake property was sold to visitors.’

sentence (s) ‘In the hotel the fake property was sold to visitors’

verb phrase (vp) ‘was sold to visitors’

noun phrase (np) ‘the hotel’, ‘the fake property’, ‘visitors’

prepositional phrase (pp) ‘In the hotel’, ‘to visitors’

Table 3.1: Example non-terminal symbols.

often perform as well as other simple broad-coverage parsing systems for predicting tree structure

from part-of-speech tag sequences [10, 48]. The other popular model in statistical language learning

is the Hidden Markov Model, which, however, is used more for assigning word-tags to words; the

PCFG is used to assign syntactic structures to these word-tags.

This section describes how the PCFG represents parse trees, its evaluation and levels of perfor-

mance. The description of the algorithm is largely taken from [9] and the results from [11, 48].

3.3.1 Context-free grammars

The context-free grammar (CFG) is a collection of rules which specify the permitted range of struc-

tures within a language. It consists of the following (examples are taken from Figure 3.1):

� A set of terminal symbols – the words and punctuation appearing at the leaf nodes of the parse

tree, e.g. “In”, “the”, “hotel”, etc.

� A set of non-terminal symbols – the parts of speech labelled prep, verb etc.

� A specific non-terminal designated as the starting symbol (s-maj in the example parse tree).

� A set of rewrite rules – each with a single non-terminal on the left-hand side and one or more

terminal or non-terminal symbols on the right.

Some example non-terminal symbols and rules are given in Tables 3.1 and 3.2 respectively.

A sentence is described by specifying which of the rules and non-terminal symbols in the CFG

account for the words in the sentence. Thus, for Figure 3.1 and Table 3.2, the first rule in the table

is the only one with the starting symbol s-maj. The fpunc is the symbol for the full-stop in the

sentence. The s is a further non-terminal symbol, and offers the expansions np vp or pp np vp;

in this example the latter is the one to select. It can be seen that the structure of the sentence in

Figure 3.1 gradually unfolds until all the words have been accounted for.

However, the CFG also has some significant limitations as a representation for natural language.

These limitations include:

ambiguity with CFGs can arise when more than one sequence of rewrite rules may generate the

same sentence. This leads to more than one possible interpretation of a given sentence, e.g.

in the classic “Swat flies like ants”. Is the interpretation that flies are to be swatted like ants,

or that swats fly in the same manner as ants (i.e. is ‘fly’ a verb or a noun)? Either or both is a

possible outcome based on plausible sets of rewrite rules.

inadequacy with CFGs is present because they do not capture some of the more prevalent features

of English, such as the agreement between a verb and its noun. To enforce agreement in the

51

s-maj ! s fpunc det ! the

s ! np vp noun ! hotel

s ! pp np vp prep ! In

vp ! verb adj ! fake

np ! det noun fpunc ! .

pp ! prep np noun ! property

vp ! aux verb pp verb ! sold

np ! det noun noun noun ! hotel

np ! noun aux ! was

Table 3.2: Some context-free rules.

rewrite rule s! np vp would require a duplication of the rule, one forcing the nouns and

verbs to be selected from singular examples, and a second forcing the selection to be made

from plural examples.

A further problem lies in the use of long-distance dependencies, such as in ‘Whom did Fred

give the ball to?’. The “Whom” is the noun phrase from the prepositional phrase “to whom”

at the end of the sentence. Thus, there is a dependency between the “to” and the “whom”,

which is at a long-distance, because the two words are at opposite ends of the sentence. These

dependencies are also not captured by the standard CFG.

Some of these problems can be addressed by including the probability of a rule along with its

definition, which leads to the definition of a Probabilistic Context-Free Grammar.

3.3.2 Probabilistic context-free grammars

The basic form of a rule in a CFG is A! , where A is a non-terminal symbol and is a string of

terminal and non-terminal symbols. The PCFG, as the name suggests, extends this representation

to include the probability that the rule will occur: so the rules in a PCFG are of the form P (A !

 jA). The probabilities are therefore arranged so that, for each non-terminal symbol, the sum of

the probabilities of all the rules with that symbol in the left-hand side is 1. The probabilities mean

that the likelihood of any given parse of a sentence can be calculated with respect to that grammar,

by multiplying out the individual probabilities for each rule that is applied.

When training the PCFG, the initial step is to use the training corpus to create an actual grammar

in PCFG form. One rather crude way to do this is to take each of the non-terminal symbols in the

training corpus and produce a rule for that symbol. For example, if the first sentence has a node

s with nodes np and vp as its immediate children, then the grammar needs the rule s! np vp.

Having read off all the rules, the probability of each rule applying at any stage can similarly be

calculated, according to how often each is used in the corpus.

The effectiveness of PCFGs in learning to parse is based on their use of probabilities in the

rewrite rules, which enables the parser to accommodate itself to the statistical regularities in the

corpus. This factor can be used in a number of techniques to provide better parsers than the simple

one described above. One technique further constrains the parser to select the grammar which

maximises the likelihood of the parses found in the training corpus. The usefulness of this constraint

is illustrated by considering the following trivial grammar for English.

s = word s

s = word

word = w

1

52

The stranger ate the doughnut with a fork

det noun verb det noun prep det noun

np np

pp

np

vp

s

The stranger ate the doughnut with a fork

det noun verb det noun prep det noun

np np

pp
np

vp

s

(a) Target parse

(b) Output parse

Figure 3.2: A comparison between (a) target parse tree, and (b) output parse tree.

word = w

2

etc

This grammar, because the word “the” is the most common word in English, predicts that the

sentence “The.” is the most likely English sentence! However, the constraint given above would re-

ject this grammar, because it assigns high probabilities to sentences that do not occur in the training

corpus, and must therefore assign low probabilities to those that do. Thus, the learning process can

reject the trivial grammar compared to a better one, because it is less likely to generate the train-

ing set. (With the crude selection of a grammar used in the simplified PCFG training model given

above, the initial grammar is instead forced to be a reasonable model of the training data, because

the grammar is directly derived from the data.)

One useful feature of the PCFG is that, because the CFG is not a perfect model for English, and

due to the flexibility of English constructions, some sentences in the corpus may not conform to the

constructed grammar. This may be dealt with by allocating such rare sentences a low probability of

outcome. Thus, the grammar need not reject such sentences, but their scarcity can be reflected in

the low probability of their being parsed.

3.3.3 Evaluation of parse trees

Once the PCFG has been trained, it can be tested on a selection of unseen sentences. For each

sentence in the test set, the parser is applied to find the most likely parse for that sentence. Typ-

ically, this stage can require searching through approximately a million possible parses for each

sentence [11], and the one with the greatest likelihood is selected as the parse for the given sen-

tence. The parser’s predicted parse trees for this test set are then compared to the target ones, and

the performance of the parser is evaluated based upon how close the parse trees produced by the

parser match the targets.

53

In order to demonstrate how the evaluation process operates, consider the two parse trees in

Figure 3.2: (a) is the target output for the parser, and (b) is the actual output from the parser. The

question is: How best to quantify the degree of similarity and differences between them? The

standard method is to measure the precision and recall on constituents.

The precision is the number of correct non-terminal constituents found by the parser (summed

over all the sentences in the test set) divided by the total number of non-terminal constituents output

by the parser. The recall is the number of correct constituents divided by the number in the target

parse. A constituent is considered correct if it starts and finishes at the same place, and is labelled

with the correct non-terminal symbol. Note that the terminal symbols are not included in the evalu-

ation. (Precision may be compared with the standard measure of ‘errors of commission’; and recall

with the standard ‘errors of omission’.)

For example, in Figure 3.2 there are 6 constituents in the output parse tree (a) (one s, three np’s,

one vp, and one pp). The only incorrect one is the np headed by “doughnut”, which should have

ended after “doughnut” but instead ends after “fork”. Thus the precision is 5/6, or 83%. As there

are also 6 non-terminals in the target parse, the recall is also 83%. Note that the parts of speech

(word-tags) are included with the terminal symbols and so ignored in computing the precision and

recall. This distinguishes the parsing accuracy from the part-of-speech tagging accuracy [11].

Parsers which are given just the parts of speech, and asked to parse the sentences (i.e. with-

out seeing the actual words), achieve about 72% average precision/recall [48]. Better results are

achieved by giving the parser access to the words and using fine-grained statistics on how particu-

lar English words fit into parses. For such parsers, precision/recall is of the order of 87-88% [11].

These results are achieved using the Penn Wall Street Journal corpus [64], containing approximately

50,000 sentences of average length 23 words (roughly one million words in total).

3.3.4 Strengths and weaknesses

The most important restriction on the PCFG model lies in the construction of the initial grammar

from the training part of the corpus. In the experiments described by Charniak [11] this proce-

dure was achieved in the relatively crude manner described in Section 3.3.2. More sophisticated

techniques exist, but rely on adding greater linguistic knowledge to the parsing model, increasing

its specialisation. These parsers, although achieving good results with one corpus, do not always

produce equally good results on further corpora.

However, it is also true that the PCFG model provides excellent results in the domain of learning

to parse natural language. This is partly because, in spite of the validity of the criticisms given above,

the actual impact of these erroneous elements on the precision/recall figures is small. This means

that the parser is, in many respects, robust in the face of small inconsistencies. One of the reasons

being that the parse output by the parser is the result of a competition between all the possible

parses of a given sentence. This factor, for nontrivial sentences, means that the consistent aspects

of a sentence will tend to outweigh the inconsistent aspects sufficiently to win the competition.

The precision/recall evaluation of this parse operates at the level of constituents, not sentences or

complete parses, and so mistakes at the constituent level will not necessarily lead to an adverse

affect on other correct constituents within the sentence.

It should also be noted that the PCFG uses a classical form of representation which, in view of

the discussion in Section 2.3.1, is worth emphasising. Essentially, the use of non-terminal symbols

in the CFG, and their composition in rewrite rules, means that systematicity is an inherent element

of their generalisation ability. Information learned about words or part-of-speech tags in one con-

stituent (labelled by one non-terminal symbol) will automatically be generalised to further instances

of that constituent (later occurrences of that same non-terminal).

To conclude, the PCFG offers a set of benchmark results achieved by a statistical language learn-

54

ing technique in the application of learning to parse natural language. The next section considers a

different approach to language learning, that of the connectionist community.

3.4 Connectionist Language Learning: Recurrent Networks

In contrast to statistical language learning, connectionist language learning begins from a different

premise: instead of modelling the grammatical representation of language, the network is left to

work out its own internal representation based on the observed association of input to output. This

approach is justified because connectionist networks are known to be capable of learning a wide

range of possible mappings from input to output, given adequate training data. The use of a con-

nectionist network therefore aims to demonstrate that a general learning algorithm can achieve a

reasonable performance at the particular task of learning natural language. This section describes

some applications in this spirit of a connectionist network to language acquisition.

The primary requirement for a connectionist network when dealing with language is an ability

to learn about patterns across time. This ability is required for language learning because the output

features for an individual word within a sentence may be determined by the preceding words in that

sentence. Therefore the Simple Recurrent Network (SRN) [18, 19] is popular in this area because,

as opposed to the feed-forward network, the SRN has context units which hold information from

earlier parts of a sentence for use in processing the current word.

This section reviews the following areas of work. The first, by St. John and McClelland [47],

introduced the Sentence Gestalt model, which learns about semantic roles and makes automatic in-

ferences about sentences selected from a particular target domain. By contrast, the basic SRN was

used in a series of experiments which focused more on the broader ability to handle grammatical

information [18, 19, 20]. Elman’s work was restricted to toy grammars, but demonstrated the ef-

fectiveness of the SRN for language learning. Lawrence et al. [61, 60, 62] amplified Elman’s work

with experiments requiring the SRN to learn more complex grammars. In addition, Reilly [81]

presents some experiments with samples of real natural language, in place of the more limited do-

mains addressed above. Although these approaches have relied on simplistic output representations,

more complex tasks may be tackled. An important area of connectionist language learning is oc-

cupied by the holistic parsers, e.g. as summarised in [43], which use recurrent networks to output

structured parse trees. Finally, some alternative approaches to connectionist language learning have

been devised, employing various forms of structured network design.

3.4.1 Sentence roles, inference and selection

In the previous section on statistical language learning, a representation for natural language was

proposed which assigned a syntactic structure to a string of words. This structure, a parse tree,

was intended to encapsulate some of what the native speaker knows about his/her language. This

representation would assign to each word its role within the sentence. For example, whether the

word is a verb, noun or adjective. However, there is a further level of sentence comprehension

at which the native speaker intuitively understands the meaning behind a sentence. The following

connectionist model of some aspects of language learning is intended to capture this semantic level

of sentence comprehension. In many ways it addresses the next stage from the simple parsing pro-

cess considered above, because it converts the syntactic structure into a semantic structure. St. John

and McClelland [47] therefore aim to ‘develop a model that can learn to convert a simple sentence

into a conceptual representation of the event that the sentence describes.’ In particular, they are

concerned with ‘the conversion of a sequence of sentence constituents, such as noun phrases, into a

representation of the event.’

55

Figure 3.3: The Sentence Gestalt network: area A processes sentences into the sentence gestalt, and

area B the sentence gestalt into the output representation.

When people read and understand a sentence, they fill out the semantic information contained in

that sentence based on the words in the sentence. For example, with the sentence ‘Bobby pounded

the boards together with nails’, people automatically infer ‘with a hammer’. This process of au-

tomatic inference produces a number of beneficial effects, such as: the ability to disambiguate

ambiguous words, to instantiate vague words, to assign thematic roles, and to elaborate implied

roles. The model developed by St. John and McClelland is intended to learn these abilities, as well

as show how an interpretation of a sentence is adjusted as each constituent is processed.

The Sentence Gestalt (SG) model developed by St. John and McClelland [47] is a two-stage

network, illustrated in Figure 3.3. The first stage is a standard recurrent network, which learns

the sentence gestalt information from a temporal sequence of constituents. Each constituent is

either a simple noun phrase, a prepositional phrase, or a verb. It should be noted that only single

clause sentences, without embeddings, are used. The second stage acts as a probe for information

contained in the sentence gestalt. Each probe is a role/filler pair, and the sentence gestalt is probed

by presenting either a role or a filler, from which the network is to supply the complete pair. For

example, for the sentence ‘The pitcher threw the ball’, the possible role/filler pairs are: agent/pitcher,

action/threw, patient/ball. Note that the role/filler pairs may not correspond to particular words in

the sentence, but instead refer to information about the sentence as a semantic whole. For example,

given an appropriate training set, the sentence ‘Mary ate the spaghetti’ would most likely have the

filler “fork” in the instrument role. As is standard with outputs from connectionist networks, the

actual output is a real number, and represents the likelihood of particular roles or fillers appearing

in the location asked for. Thus, some degree of conceptual organisation can be noted by analysing

the outputs of the network over a number of situations.

In their experiments, St. John and McClelland [47] train the SG model (with 85 input units for

the sentence constituents and 100 units for the sentence gestalt and hidden layers) on small sets

of events, around 100 sentences. Their results show that the SG model is successful in correctly

assigning constituents to thematic roles based on syntactic and semantic constraints. Further, the

SG model is able to use context to disambiguate meanings and to instantiate vague terms in ways

appropriate to their context. These kinds of results, where the network aquires statistics about

associations within the training set and combines the effects of multiple possibilities, are standard

for connectionist networks. This ability is also behind the results achieved with the SRN described

below, and provides a compelling justification for the use of such models.

56

3.4.2 Toy grammars

Elman [19] is interested in forming a computational model of language, and highlights the following

questions:

� What is the nature of the linguistic representations?

� How can complex structural relationships such as constituency be represented?

� How can the apparently open-ended nature of language be accommodated by a fixed-resource

system?

So as to illuminate possible solutions to these questions Elman [18, 19, 20] describes a series of

experiments which investigate the ability of a connectionist model, the Simple Recurrent Network

(SRN), in learning to predict words in sentences. The SRN has been described in Section 2.2.2,

and is suited to experiments in language acquisition because of its ability to learn about patterns

across time. Elman’s experiments test the SRN’s ability by training it on sentences from various

toy grammars. The trained network is then analysed, to see what has been learned from the training

data. This information provides some answers to the above questions.

There are two basic experiments which Elman performs. The first is a classification task, requir-

ing the network to learn to predict words based upon the grammatical and semantic requirements of

a sentence. This requires the network to learn how words cluster into semantic categories. The sec-

ond requires the network to make more complex predictions based upon the grammatical agreement

of verbs with nouns. In these experiments Elman established the basic protocol for connection-

ist language learning with SRNs, to learn to predict the next word in a sentence. This contrasts

strongly with the complex output representations of parse trees formed by PCFGs, and also with the

ability to extract role/filler pairs in the Sentence Gestalt model. However, this protocol does have

the advantage of providing an unsupervised task to the SRN, without the necessity for a separate

target output. It also reflects the general difficulty which connectionist models have in representing

structured data.

In both types of experiment performed by Elman the task is to learn about sentences drawn from

a toy grammar, which is designed to highlight particular features of language. The experiments train

the network to predict the next word in the sentence. Therefore, if the sentence is ‘dog sees cat’,

then the network must predict “sees” after being shown “dog” and predict “cat” after being shown

‘dog sees’. The network’s behaviour is not expected to be exact, as, for example, ‘dog sees mouse’

may also be a valid sentence. Instead, the network’s output will reflect the relative probability of

each word appearing next. Thus, ‘dog eats bone’ is more likely as a sentence than ‘dog eats grass’,

and so, in predicting the third word after ‘dog eats’, “grass” should have a low probability, and

“bone” a relatively high one.

The words of the sentence are represented in an identical fashion on the network’s input and

output units, with a localist representation using basis vectors, i.e. every word is assigned a vector

in which a single bit is turned on. Thus, no information is encoded into the representation about any

item’s syntactic category. Any information required by the network in predicting a given word’s

occurrence must therefore be learnt from that word’s context in the sentences of the training data.

The training data is created by a sentence generating program, with the words in every sentence con-

catenated into a single stream. This stream of words is then presented to the network in consecutive

training passes. One comment should be made here about Elman’s training algorithm: instead of

using Backpropagation Through Time [85], the context units are simply treated as additional input

units within a feed-forward network, and the standard backpropagation algorithm for static patterns

is used. This has a constraining effect on the lengths of dependencies which can be acquired, and

57

later researchers, e.g. Lawrence et al. [62], prefer the more powerful Backpropagation Through

Time.

In the first set of experiments, category prediction, the aim is to test the SRN’s ability to infer

categories of words from the training data [18]. For example, if the verb in a sentence is “eats”, then

any edible noun will be a suitable next word. However, because the information about which nouns

are edible is not present in the training data, it must be inferred from the use of the words in sentences

seen by the network. In order to test for this ability, the network is presented with a collection of

two or three word sentences containing words from a variety of semantic categories. The sentences

are of the form ‘noun verb’ or ‘noun verb noun’. The nouns and verbs are chosen so that verbs may

require a direct object, never have a direct object (i.e. be intransitive), or have an optional direct

object. Further, the actual nouns and verb appearing in each sentence are constrained semantically.

For example, the nouns were divided into “animates” and “inanimates”; animate nouns into the

classes “human” or “nonhuman”; nonhuman nouns into “large animals” or “small animals”, etc.

Similarly, the verbs can be separated into semantic classes, requiring particular classes of noun as a

subject.

An SRN with 150 hidden units was trained on a corpus of approximately 10,000 of these sen-

tences, drawn from a vocabulary of 29 words. The network was then analysed for evidence of

semantic categorisation. For each sentence, the network’s mean hidden unit vector was used to

determine which nouns, for example, were treated similarly by the network. Words are treated sim-

ilarly if they have a similar likelihood of being predicted in a particular sentence. If the sentence

began “boy eats” then the next word should be predicted to be an edible noun, and in this example

the network assigns both “sandwich” and “cookie” an equally high likelihood. Elman found that the

hidden units represented the distributional properties of the lexical items in the corpus, and therefore

the SRN had formed an equivalent internal representation purely from the sentences present in the

training set.

In Elman’s second set of experiments, involving grammatical agreements, the sentence grammar

was extended to include relative clauses, e.g. ‘boys see dogs who see girls who hear’. It should be

noted that these sentences are not claimed to capture all aspects of English grammar. They are

deliberately simplistic to capture certain features of the language, in this case the problem of noun-

verb agreement. For example, in the sentences ‘boys who girls see hear’ and ‘boy who girls see

hears’, the required agreement in number of the final verb to the first noun must be preserved across

the relative clause.

The corpus for this task is formed by extending the sentence generator program for the category

prediction task with relative clauses and including a further constraint of noun-verb agreement.

Sentences are therefore of the form ‘noun verb’ or ‘noun verb noun’, with the added complication

that each noun may have an associated relative clause of the form ‘who verb noun’ or ‘who noun

verb’. Sentences must also obey certain grammatical rules. These are that the subject noun and

verb in a sentence or clause must agree. Again, verbs fall into one of three classes, where a direct

object is required, optional or precluded. Relative clauses extend the range of such interactions.

Recursion of relative clauses, e.g. ‘Boys who girls who dogs chase see hear’, can extend the distance

of agreements over considerable distances. Finally, the ‘.’ marker for the end of a grammatical

sentence can appear whenever appropriate.

For this experiment, Elman [19] used an extended form of the SRN, as shown in Figure 3.4.

Two extra layers have been added, labelled ‘Comp’ for Compression. The Input and Output layers

each have 26 units, and the Hidden and Context units each have 70 units. The Compression layers

each have 10 units, and are designed to ensure that the mapping from Input-to-Hidden or Hidden-

to-Output is distributed over several units.

Experiments were run in a similar fashion to those in the lexical categorisation experiment.

A continuous string of 10,000 sentences was constructed, and the network trained on successive

58

Hidden

Input

Comp

Comp

Context

Output

Figure 3.4: Diagram of Extended Simple Recurrent Network

passes. However, due to the additional complexity caused by the recursion, it was found that the

network could not learn the full task all at once. Therefore, the network was first trained on sentences

without any recursion, and then progressively trained on sentences composed of increasing layers

of recursion. This approach, starting from the simpler data and working towards the more complex,

enables the network to learn the basic interactions, such as agreement and verb argument, before

extending these to apply across relative clauses. (See Elman [21] for more details on this approach,

although Rohde and Plaut [83, 84] present evidence indicating that this approach is neither robust

nor essential with more complex languages.)

Results from these experiments were analysed as before, by computing the mean hidden unit

vector for the words in various sentences. Two points of interest came out of this analysis. The

first is that, as planned, the SRN was capable of learning to predict the relative likelihood of the

different words, reflecting the requirements of agreement and verb argument. The second is that the

precise representation of each word differed depending on the context of that word. For example,

in the sentences ‘boys see boys’ and ‘boys who see boys see boys’, the word “boys” is mapped to a

similar hidden unit vector in each case. However, when the word appears as the initial subject of a

sentence, it has a slightly different vector to the case when it is the object of a relative clause. Thus,

each word has a similar vector, because it is the same word, but the vector changes slightly to reflect

the grammatical context of that word.

This ability of SRNs to alter the basic representation of a word by small amounts to reflect its

grammatical context is important. Elman [20] compares this ability to handle interactions among

constituents to the accommodation model of language, put forward by Langacker [58]. Accommo-

dation refers to the subtle changes a word undergoes based upon its context. For example, the word

“runs” alters its meaning in the cases, ‘the man runs’, ‘the cat runs’ and ‘the tap runs’. This ability,

as noted before, is a general ability of connectionist networks to capture statistical information and

combine information from different entities to produce an output.

In conclusion, the SRN has proven a viable model of language learning, capturing and using

certain regularities in language, such as agreement and verb argument. However, the distributed in-

ternal representation raises questions as to the capacity of the network in terms of vocabulary. Each

word has a range of hidden unit vectors which are categorised as that word, and movement of the

word vector within this range is used to encode for the grammatical context of that word with further

59

Category Examples

Nouns (N) John, book

Verbs (V) hit, be

Adjectives (A) eager, old

Prepositions (P) without, with

Complementiser (C) that, for

Determiner (D) the

Adverb (Adv) quickly

Marker (Mrkr) possessive ’s

Table 3.3: Parts of speech

movements potentially encoding semantic changes. The number of available hidden unit vectors,

each with its own range for grammatical context, will be constrained by the size of the network.

Training for a large vocabulary with a large range of possible grammatical positions would require

an equally large training set. Although Elman tests his SRNs on unseen sentences from the corpus,

no attempt is made to limit the training corpus so that generalisation of the network across sentence

structure may be observed, such as required by the property of systematicity demonstrated in the

experiments of Hadley and Hayward [32, 33] (Section 2.3.4). The next two groups of experiments

attempt to apply some of the strong points of Elman’s work with SRNs to more complex examples

of natural language.

3.4.3 Natural language grammatical inference

Lawrence et al. [60] investigate the ability of various machine learning techniques on the induc-

tive inference of a complex grammar, concentrating solely on recurrent connectionist networks in

Lawrence et al. [62]. The importance of this work, as compared to that of Elman from the previ-

ous section, is that the task is more complex involving samples of real natural language. Lawrence

et al. [60, 62] require their networks to classify natural language sentences as grammatical or un-

grammatical. The intention being that the final system should have acquired the discriminatory

power of the Principles and Parameters (Government-and-Binding Theory) linguistic framework of

Chomsky [13].

The training data contained 552 English positive and negative examples taken from an intro-

ductory GB-linguistics textbook. Most of this data is organised into minimal pairs, such as: I am

eager for John to win / *I am eager John to win, with the ‘*’, by convention,

indicating an ungrammatical sentence. The networks are then trained to indicate whether a given

sentence is grammatical or not. Due to the small size of the dataset, the words were first converted

into the major syntactic categories assumed under GB-theory. Table 3.3 summarises the major parts

of speech used.

Four types of network were investigated in [62]: locally recurrent networks, which are mul-

tilayer perceptrons with local feedback on each hidden node; a network with feedback from each

output node to all hidden nodes; an Elman-style Simple Recurrent Network (SRN); and a fully

recurrent network.

It was found that Elman’s SRN achieved the best performance. (Note however that Elman

only uses a limited version of Backpropagation, whereas Lawrence et al. use true Backpropagation

Through Time.) Using an SRN with 20 hidden units, and an input window of the last two words in

the sentence, the SRN could achieve 100% accuracy in training (99.6% average over 5 trials). On the

60

test data this resulted in 74.2% accuracy, i.e. the SRN was able to discriminate between grammatical

and ungrammatical test sentences fairly successfully. This performance is more impressive when

it is considered that the training set is relatively small, and the data, selected by a linguist, are

examples of minimal pairs, which need not have any generalisable properties.

This comparison of recurrent networks is interesting as it shows, experimentally, that the SRN

is the more powerful of the various recurrent network architectures in this domain. Partly this is

due to the connectivity of the SRN, e.g. as compared with the first network which only uses locally

recurrent links on the hidden layer. However, this is not just a connectivity issue, as shown by

comparison with the fully connected network, which did not learn as well although its architecture

is an SRN with extra recurrent links from the output units. The difference, as Lawrence et al.

show, lies in the shape of the error surface. The experimental evidence suggests that the shape of

the SRN’s error surface is more appropriate for the training algorithm used, i.e. Backpropagation

Through Time.

3.4.4 Real natural language

The previous two sections have described the application of Simple Recurrent Networks (SRNs)

to learning subsets of natural language, either sentences from toy grammars, or minimal pairs of

grammatical/ungrammatical sentences. These experiments have shown that the SRN is capable of

learning complex grammatical information. However, to be of real interest as a model for practical

language learning or psycholinguistic modelling, these experiments must be extended to samples of

real natural language, such as the datasets used for statistical language learning.

One example of such work is that of Reilly [81], in which an SRN was trained with a sample

of 4000 sentences taken from the Wall Street Journal corpus. As Reilly explains, applying an SRN

to such a corpus has two major problems. The first is the training algorithm, which is slow and

inefficient. In order to address this, Reilly adapts Elman’s starting-small training procedure [21],

which trains the network on progressively longer dependencies. Reilly trains the network with the

full corpus as training data on each epoch, but resets the context unit activations at different stages

to control the length of dependency being trained. Initially this occurs after every word, but after

successive numbers of training cycles this is increased, until finally the reset occurs only at the end

of each sentence.

The second difficulty faced by the SRN is that the standard input-output format used is rather

crude. Reilly instead uses a representation adapted from one by Zavrel and Veenstra [107], which

reflects the semantic context of each word in the corpus. Thus, instead of using a 1-in-n vector,

each word is representated as a distributed lexical context. Essentially, a context is determined for

each word in the corpus by considering the nearest two words before and after it in the sentence.

In order to make this manageable, only the most common 250 words in the corpus are used to

determine context. Each word therefore has a four component context, one component for each

of the neighbouring words, where each component may take one of 250 values (words). Using

principal component analysis this has been reduced to a set of 25 lexical representation vectors

which determine the context of each word.

Using these techniques, Reilly has shown that a trained SRN has some success on word-tag

prediction (20% of the exact tags are predicted, 70% of the time the right word tag is one of the

top 5 predicted, an untrained network achieves near 0% in each case). However, Reilly is less

interested in the performance of the SRN than in its appropriateness as a model for psycholinguistic

phenomena. One such phenomenon is the representation of ambiguous words by their context. This

is tested by observing the network’s response to an ambiguous word, such as “suit” in the sentence

‘The suit was worn by the chairman’. By looking at the predicted vector by the network for the

verb, it was clear that the network preferred a legal context for the word “suit” as in the sentence

61

Figure 3.5: Diagram of a Holistic Parser

‘The suit was filed by the company’. This is because the training corpus had a predominance of

sentences from a legal context.

Such analysis has some similarities with that of St. John and McClelland’s Sentence Gestalt

(SG) model, which used a probe to determine the SG-network’s current contextual preference in

a given sentence. This kind of analysis again demonstrates that the SRN is capable of acquiring

statistical contextual information for different words, although the actual performance of the SRN

with this contextual information is not particularly impressive.

3.4.5 Holistic parsers

In all cases, the use of SRNs for language learning in the previous subsections have employed

unstructured output representations. The holistic parser augments the SRN with further mechanisms

for generating structured output, such as parse trees. The basic concept behind an holistic parser is

to present the input sequence sequentially to a recurrent network, and so encode it into a distributed

representation. This representation may then be transformed, and a decoding process employed to

extract a parse tree from the distributed representation. The parser gets its holistic nature from the

internal distributed representation, which contains within it information about the entire sentence.

A variety of holistic parsers has been developed, and a summary and empirical comparison is

provided in Ho and Chan [43]. The variety arises from the form of network used to perform the

encoding or decoding, and whether an explicit mapping is necessary for converting the output from

the encoder into the input for the decoder. For example, two common forms of encoder/decoder

are the SRN or the RAAM (the latter as described in Section 2.3.2 of this thesis). In Sharkey and

Sharkey [90], the SRN was used as the encoder, and trained on the sequence prediction task, just

like the experiments in the previous subsections. A RAAM was used as the decoder, and trained to

map a distributed representation into a parse tree. (Note that an extra encoder must be trained for the

RAAM as well, to provide the distributed representation of the parse tree.) The third element of the

parser is a standard feed-forward network, which takes the hidden layer representation of the SRN

after reading the whole sentence and transforms it into the distributed representation for decoding

by the RAAM. Reilly [80] developed a similar model, but instead of training the encoding SRN to

predict the next word in the sentence, the SRN was trained to output the distributed representation

62

Figure 3.6: Diagram of Sample Parse Tree used in Holistic Parsing

for the RAAM.

The SRAAM (Sequential RAAM) [6] may also be used be used for encoding the input sentence.

This network is essentially the same as an SRN, except with auto-association. As with the standard

SRN, the input to the network is a sequence of words, along with the activation on the hidden

units from the previous time period, as conveyed in the context units. The output of the SRAAM

reproduces this input, outputting the current input word as well as the activation on the hidden units

from the previous time period. After reading the whole sentence, the hidden-layer activation is

used as the encoded form of the sentence. Two of these SRAAMs are used by Ho and Chan [43]

in their Confluent Preorder Parser (CPP), illustrated in Figure 3.5, one for encoding and one for

decoding. The two SRAAMs are trained together, so that their hidden layer representations for the

sentence encoding and the parse tree are identical. This is achieved by training the two SRAAMs

side-by-side, passing the error from each SRAAM down both the sentence SRAAM and the parse

tree SRAAM. Thus, the representation produced by the sentence SRAAM can be used directly to

generate the parse tree from the parse tree SRAAM.

What forms of parse tree may be represented within an SRAAM? In Ho and Chan [43] a simple

context-free grammar is used to generate sentences such as that illustrated in Figure 3.6. Because

this parse tree is to be represented within a connectionist distributed representation, its structure

must be made explicit in its surface form. The sample sentence is therefore represented by its

preorder form, in which the tree is read out, beginning from the root node, and proceeding down the

left-branch to each terminal. The sample sentence is therefore represented as: (s np D N vp V np

np D N pp P np D N). This sequential representation of the parse tree may then be encoded using

the SRAAM, as described above. However, this approach is only applicable to fixed-valence trees,

i.e. those in which the number of child links from each node is fixed. In this case, the tree is strictly

binary. (Note that a null symbol is introduced in the rare cases where a termial node is not present.

Further discussion of this representation is contained in Ho and Chan [42].)

Ho and Chan [43] contains an empirical comparison of a variety of holistic parsers on a simple

context-free grammar. Their ability to generalise to novel sentences is tested, although the type

of novelty is not controlled, e.g. in terms of systematicity, such as with the Hebbian connectionist

network [32, 33] described in Section 2.3.4 of this thesis. In addition, their robustness across noise

in the input is tested. Ho and Chan [43] also discuss some limitations in holistic parsers. The more

63

Figure 3.7: The subsymbolic parser for embedded clauses

important of these, in terms of scalability of the model to real world data, include:

� the simplicity of the input representation prevents the use of semantics to disambiguate pos-

sible alternative parses for equivalent sets of input word-tags.

� difficulties in training and convergence inhibit the use of holistic parsers on larger corpora

(the examples use only 112 sentences).

� the distributed representations scale poorly in practice, permitting only a limited number of

possible sentence and parse tree structures.

In addition to these, the representation for the parse trees is a further limiting factor. The require-

ment that the parse tree be represented with fixed-valency would rule out many corpora typical for

parsing with statistical parsers (or alternatively require many changes to be made to the target repre-

sentation). Many of these restrictions stem from the basic principle behind the holistic parser, that a

single distributed representation for the entire sentence should be used to encode all the information

required for parsing.

3.4.6 Other approaches

There exists a multitude of other approaches to connectionist natural language processing, and a full

review would go beyond the aims of this chapter. The SRN and holistic parsers covered above have

been designed as rather generic architectures for coping with general problems in parsing, such as

the use of patterns across time and the output of structured information. Other approaches involve

including some linguistic knowledge explicitly into the connectionist architecture.

For example, the subsymbolic parser for embedded clauses (SPEC) [68] uses a network divided

into three sections, as depicted in Figure 3.7. SPEC uses an SRN as a parser, a RAAM network

as a stack, and a feed-forward network as the segmenter. The model handles case-role assignments

only, treating sentences as (agent, action, patient) triples. Thus, the sentence ‘The girl who liked the

dog saw the boy’ parses into two triples: (girl liked dog) and (girl saw boy). SPEC’s input is the

sequence of words in the sentence, and its output is the triple pertaining to the current input word.

So, for the example sentence, SPEC must output the second triple for the first two words, the first

triple for the second four words (i.e. through the relative clause) then revert to the second triple for

the remaining three words. The stack is used to contain the parser’s representation for the initial

triple whilst it is processing the relative clause; once the clause is completed, the state of the parser

when processing the initial triple is restored. This process must occur on the boundaries between

relative clauses, and the segmenter is used to recognise the boundaries and control the movement of

information to and from the stack.

SPEC uses a network composed of three basic elements, as illustrated in Figure 3.7. The parser

is the familiar SRN, and reads the word representation as its input and generates the case-role repre-

sentation as its output. The generalisations across structure required of SPEC are facilitated through

three architectural features [68]. First, the output consists of specific case-role vectors, instead of the

64

more comprehensive representation found, e.g., in holistic parsers. Second, the segmenter network

breaks the input sequence in to smaller chunks. And third, the stack network memorises constituents

over intervening embedded clauses. The stack is used to store the parser’s representation for un-

completed triples whilst processing relative clauses; once the clause is completed, the triple is then

retrieved and the state of the parser restored. This process must occur on the boundaries between

relative cluases, and the segmenter’s role is to recognise the boundaries and control the movement

of information to and from the stack.

SPEC produces good generalisation behaviour on a limited range of sentences. One difficulty

is that the quality of the encoding in the stack degrades as more items are added, and this leads

to the system breaking down with multiple-centre embeddings; this is a common problem with

RAAM-type networks, and is also found in holistic parsers [44]. This causes linguistically inter-

esting phenomena with centre-embeddings [12], but here the surface phenomenon is given a dif-

ferent explanation, limited resolution in the internal representation. However, SPEC is restricted to

producing just these case-role triples. Hence, scaling up such a model to produce the parse trees

found in natural language corpora would require more than simply applying the network to further

datasets [69].

Further examples of more structured connectionist parsers include the connectionist determin-

stic parser [53], which combines a symbolic parser rather like PARSIFAL [63], with a feed-forward

connectionist network, and the neural network pushdown automaton [96]. However, these ap-

proaches, due to the extra structure, are not purely connectionist parsers, as they partially reim-

plement some properties of symbolic systems. Hence, this concludes the review of connectionist

attempts at natural language learning.

3.5 TSVB Parser Representations: NNEP

The previous sections have described various learning algorithms used in language acquisition.

This section describes some work which demonstrates that TSVB networks are an adequate com-

putational framework for the task of parsing natural language; the question of learning with such

networks is dealt with in the next chapter.

The Neural-network Node Equating Parser (NNEP) [36] is a connectionist implementation of

a syntactic parser. As a computational framework it uses the TSVB networks introduced by Shas-

tri and Ajjanagadde [92]. The use of this framework is motivated by the inability of traditional

connectionist architectures to capture generalisations due to compositional structures, i.e. system-

aticity [24]. TSVB provides a means for achieving such generalisations across constituents, as

discussed in Section 2.3, thereby capturing systematicity within the connectionist architecture. Fur-

ther, Shastri and Ajjanagadde [92] provided an implementation of TSVB in the model of reflexive

reasoning known as SHRUTI. This model is a connectionist system which supports the massively

parallel use of knowledge, evidential reasoning and symbolic computation. These features are all

useful for constructing a model of syntactic parsing.

Henderson [36] begins with a model for the grammar and output from the parser, known as a

Structure Unification Grammar (SUG) [35]. It is not appropriate to go into the details of SUG here,

but essentially the grammar supports the accumulation of partial information about the phrase struc-

ture of a sentence until a complete description of the sentence’s phrase structure tree is constructed.

The flexibility of SUG derivations arises from the simple mechanisms for combining partial de-

scriptions of phrase structure trees. The idea is as follows. For each word in the sentence, a partial

phrase structure is computed. This structure can specify various expectations for the non-terminal

nodes within it, e.g. the requirement of having (or not having) some other particular node. The SUG

derivation then takes these partial structures, and combines them, by equating nodes across struc-

65

tures. Thus, a verb structure would contain an empty non-terminal expressing the need for a noun;

this non-terminal would be equated with the head node of the constituent describing the relevant

noun. The only restriction placed on the derivation is local consistency, and completeness of the

structure is a restriction only relevant to the final result.

The properties of SUG clearly makes it attractive for a connectionist parser. That partial phrase

structures can be computed for separate words and then combined makes for a flexibility in process-

ing which fits well with the parallel and distributed model of reasoning offered by the TSVB model.

The connectionist parser, NNEP itself, is built up from three kinds of unit: input units, predicate

units and grammar units. Essentially, the input units carry activation about the words in the sentence

into the network. The predicate units hold the current parser state, and so act rather like conven-

tional hidden units. In addition, the predicate units and their links represent various pattern-action

rules, which are used by an arbitrator to determine the parser’s next action given the current parser

state and the next input word. Finally, the grammar units fire to indicate the parser’s action. These

units act rather like output units, as they provide the information on the parse tree; they also feed

activation back so as to alter the state of the predicate units.

NNEP relies on the implementation of SUG in the TSVB framework. This implementation

uses a highly structured distribution of computational elements between the input, predicate and

grammar sections of the network described above. The separate computations must handle the

patterns and actions for the combination operators, arbitrators between the possible rules which may

fire, and a parser memory with a module for handling the forgetting of unused phases. Although

the architecture is so highly structured, it relies on a distributed representation across the predicate

units. Also, the overall structure conforms closely to a standard three layered connectionist network,

with feedback links from the predicate units to themselves, as in Elman’s SRN [18], and similarly

from the grammar units to the predicate units, as in [49].

In order to demonstrate NNEP’s adequacy as a syntactic parser, Henderson [36] used test sen-

tences drawn from various potentially troublesome grammatical categories. Details cannot be given

here, but suffice to say that NNEP does handle a wide range of naturally occurring English sen-

tences. Furthermore, the computational limitations of NNEP, which include determinism, limited

instantiations of any relation and a bounded number of variables, help explain linguistic phenomena

such as classes of sentences which are cognitively hard to handle, e.g. centre-embedding and some

long distance dependencies [38].

To summarise, NNEP [36] provides a concrete example of the ability of TSVB connectionist

networks to handle rules for parsing a wide range of linguistic examples and naturally occurring En-

glish sentences. The aim of Chapter 5 is to test whether trainable TSVB networks, with unstructured

sets of hidden units, can learn equivalent parsing capabilities.

3.6 Conclusions

This chapter has presented a range of statistical and connectionist techniques for language learning

and parsing. The strengths of each type of algorithm can be summarised in the following manner:

� PCFGs use a structured output representation for parse trees, which, being a compositional

grammar, inherently generalises in accordance with systematicity. The PCFG also gathers

statistical information from a large input corpus.

� SRNs use a large training corpus to gather statistical information about the input data.

� TSVB enables a connectionist network to represent an expressive grammar in a system of

symbolic rules.

66

In spite of their wide-spread use in connectionist language learning, the SRN does not provide

comparable performance to PCFGs, basically because its output representation is not structured,

as required to represent a parse tree. The reason for this limitation is that, in each time period,

each output unit can only specify one piece of information, i.e. the amount of information output

by the network is linear with respect to the number of input words. In order to represent a parse

tree, the relationship of each word to each of the preceding words must be shown, which requires

a quadratic amount of information with respect to the number of input words. The holistic parsers

attempt to correct this limitation by including additional structure in the output mechanisms, which

must ’unfold’ the internal representation of the sentence into a parse tree. This has some severe

limitations however, primarily due to the limited capacity of the internal distributed representation,

and the need for recursive processing to extract all the levels within the parse tree. Hence, they have

not demonstrated their capability with naturally occurring text, as typically used with statistical

parsers.

The next chapter defines a trainable class of TSVB networks, and Chapter 5 considers whether

the SSN, the most effective of these TSVB networks, can bridge the gap between connectionist and

statistical language learning.

67

Chapter 4

Trainable TSVB Connectionist

Networks

The previous two chapters have covered a wide range of connectionist networks and systems for

parsing. In this chapter a new form of connectionist network is developed, which has specific

features making it suitable for learning to parse. The motivation for developing this new model

has been argued on theoretical and practical grounds. The theoretical grounds were covered in

Chapter 2, where it was argued that earlier extensions to the connectionist framework for handling

structured information either did not address the output of appropriate information for parsing, or

else did not provide sufficient flexibility in their learning mechanisms for success beyond a specific

toy grammar. On practical grounds, Chapter 3 has described earlier work in parsing. Consideration

of classical and statistical parsers alongside connectionist approaches to natural language has shown

that the latter suffer through not offering similar forms of output representation. It is argued that the

main reason for this is the lack of a suitable connectionist model for learning in the types of domain

of which parsing is an example. This chapter develops such a network by demonstrating how

to construct a range of trainable connectionist networks through combining Temporal Synchrony

Variable Binding (TSVB) with Simple Recurrent Networks (SRNs).

To summarise the description from Section 2.3.5, TSVB [92] is an extension to the standard

connectionist architecture intended to solve the “binding problem”. The binding problem arises

when it is necessary to represent multiple entities and multiple properties: a mechanism is required

to represent which properties are bound to which entities. TSVB uses the synchrony of activation

pulses to represent entities; if two units are pulsing synchronously then they are representing infor-

mation bound to the same entity. Shastri and Ajjanagadde (S&A) [92] implemented this idea by

dividing each time period into separate phases, with each phase used to represent a separate entity.

Using the phases to represent variables, and defining units to represent logical propositions across

these variables, S&A constructed a model of reflexive reasoning, SHRUTI. Unfortunately, the im-

plementation of TSVB in SHRUTI uses binary-threshold units with non-differentiable activation

functions. This means that standard connectionist training algorithms, such as backpropagation,

cannot be applied to such networks.

The approach described in this chapter begins with the same TSVB framework, but constructs

a different implementation of TSVB connectionist units along with a suitable training algorithm

for networks composed of these new units. This is achieved by defining TSVB units based on the

standard sigmoid activation function. These units can then be used in a network with the architecture

of an SRN. A novel extension of Backpropagation Through Time [85] is then developed so that the

TSVB networks can be trained in a similar manner to standard connectionist networks. One side

effect of using TSVB is the creation of two kinds of unit, pulsing and non-pulsing, which produce

a wider range of possible network architectures than is usual with standard connectionist networks.

68

This range of architectures is explored in Section 4.1.3.

The implementation of TSVB described here is not the only one possible, and some variants

on the basic TSVB network are described in Section 4.1.4. In particular, one computational inef-

ficiency in the proposed implementation is addressed, which is that all phases are retained whilst

computing the current sequence. This problem can be alleviated by only retaining phases which

have been recently referred to by the output units. The addition of TSVB enables the network to

represent a range of structured output representations, and this is illustrated in Section 4.1.5. Finally,

some experiments with toy grammars are used to test the networks’ ability to output appropriately

structured patterns and also to ensure their ability to learn and generalise is robust. These results

also offer a comparison of the different architectures, and one property of the most effective class of

architecture is described. This chapter concludes by defining the Simple Synchrony Network (SSN)

as a recurrent TSVB connectionist network without links from pulsing to non-pulsing units.

4.1 Defining TSVB Networks

Temporal Synchrony Variable Binding (TSVB) [92] is a connectionist technique for representing

entities. The following three principles encapsulate the central ideas of the TSVB framework:

� Each time period is divided into discrete phases, each phase associated with a distinct entity.

� Pulsing units compute within each phase independently of other phases, and so compute

information about distinct entities.

� Non-pulsing units compute across all phases, combining information about several entities.

This section shows how these principles can be used to define a range of trainable TSVB net-

works. Firstly, the two types of TSVB unit are defined, the pulsing unit and the non-pulsing unit,

based on the standard net and sigmoid activation functions. Next, a training algorithm is developed

through a novel extension of Backpropagation Through Time [85]. Because TSVB networks have

two kinds of unit, pulsing and non-pulsing, there is a greater variety of possible network architec-

tures. This range is investigated, and six different architectures for TSVB networks, arranged in

two groups, are given. The representation by TSVB networks of structured output is illustrated,

although specific examples are to be found in the experiments described in the rest of this thesis.

Finally a number of possible variations on this implementation of TSVB networks are considered.

4.1.1 Adding TSVB to connectionist units

In this section it is shown how the principles of TSVB can be added to standard connectionist units

in order to define the two kinds of unit in TSVB networks, pulsing and non-pulsing. To introduce

the terminology and show the naturalness of this extension, the definitions for units in standard

feed-forward and recurrent networks are first presented (fuller descriptions for these may be found

in Sections 2.1 and 2.2.2 respectively).

In a standard feed-forward connectionist network, there are three kinds of unit: input units,

output units and hidden units. Every unit, j, has an activation value, o
j

, its output. For each input

unit, j, this value is obtained from the input pattern:

o

j

= in
j

if j is an input unit

Each non-input unit, j, receives input activation from a set of units, indexed by the set of inte-

gers, Inputs
j

; one of these is the unit’s bias input, and its activation is always 1. The activation value

69

of unit j is computed from the activation received from these input units. The output activation, o
i

,

of each of these units is multiplied by the weight, w
ji

, of the link and summed, forming the unit’s

net input:

net
j

=

X

i2Inputs
j

w

ji

o

i

The unit’s activation value is then computed by applying the sigmoid function to its net input:

o

j

= �(net
j

) =

1

(1 + e

�net
j

)

In order to extend these definitions to recurrent networks, time must be added. This can be

achieved, without loss of generality, by adding context units to the network; each context unit’s

activation value is that which another unit had during the previous time step. The one-to-one func-

tion, C , maps each unit to its associated context unit, and, conversely, the function C�1 maps each

context unit to its associated unit. For a unit j in a recurrent network, the definitions for its net and

activation values at time t are as follows:

net
j

=

X

i2Inputs
j

w

ji

o

i

(t)

o

j

(t) =

8

>

>

>

<

>

>

>

:

in
j

(t) if j is an input unit

o

i

(t� 1) if 9i:j = C(i) and t > 1

0 if 9i:j = C(i) and t = 1

�(net
j

(t)) otherwise

These definitions can be extended to form an implementation of TSVB units in the following

manner. First, the central idea underlying TSVB is to divide each time period into discrete phases,

the number of which may vary over time. To retain a correspondence of phases with variables,

the precise phase number should have no computational role in the network. With this restriction,

the following two types of unit may be defined. The first is the pulsing unit, which computes in

individual phases independent of other phases. Its output activation will be an n(t)-place vector, i.e.

the activation, ~

o

j

(t), of a pulsing unit j at time t is formed from n(t) values, fo
p

j

(t)j1 � p � n(t)g

where o
p

j

(t) is the activation of unit j in phase p at time t. The second type of unit is the non-pulsing

unit, which computes across all phases equally in the current time period; its output activation, o
j

(t),

at time t is constant across every phase in time t.

The net input and output activation for each type of unit within a TSVB network is defined based

on the type of unit it is receiving activation from. Pulsing units in the network are indexed by a set

of integers U
�

, and the non-pulsing units by a set of integers U
�

. The output activation of a pulsing

unit, j 2 U

�

, is defined in an analogous manner to a standard unit in a recurrent network. The

difference is that up to n(t) activations may be present within each time period, and input may be

received either from other pulsing units or else from non-pulsing units. This latter fact is reflected

in the function Rp

(i; t) within the computation of the unit’s net input. This function returns the

activation of unit i in phase p of time period t: if unit i is a non-pulsing unit (i 2 U

�

) its activation

is constant across the time-period, and so Rp

(i; t) is o
i

(t); if unit i is a pulsing unit (2 U

�

) its

activation depends on the phase, and so Rp

(i; t) is o
p

i

(t). Hence, the activation of a pulsing unit i in

phase p at time t is defined as follows:

net
p

j

(t) =

X

i2Inputs
j

w

ji

R

p

(i; t)

70

where R

p

(i; t) =

(

o

i

(t) if i 2 U
�

o

p

i

(t) if i 2 U
�

o

p

j

(t) =

8

>

>

>

<

>

>

>

:

in
p

j

(t) if j is an input unit

o

p

i

(t� 1) if 9i:j = C(i) and t > 1

0 if 9i:j = C(i) and t = 1

�(net
p

j

(t)) otherwise

Note that the net function for a phase p takes activation only from other pulsing units in phase p, or

from non-pulsing units, whose activation is the same across all phases.

Similarly, the output activation of a non-pulsing unit, j 2 U
�

, at time t is defined as:

net
j

(t) =

X

i2Inputs
j

w

ji

T (i; t)

where T (i; t) =

(

o

i

(t) if i 2 U
�

P

n(t)

p=1

o

p

i

(t) if i 2 U
�

o

j

(t) =

8

>

>

>

<

>

>

>

:

in
j

(t) if j is an input unit

o

i

(t� 1) if 9i:j = C(i) and t > 1

0 if 9i:j = C(i) and t = 1

�(net
j

(t)) otherwise

Note that the net function sums activation from pulsing units across all phases equally, as well as

summing activation from other non-pulsing units. In this case, the function T (i; t) takes on a similar

role to Rp

(i; t) for the pulsing units, except here activation from the pulsing units is summed across

their phases to compute their contribution for the entire time period.

These units can be used to construct TSVB connectionist networks. Before considering the

derivation of a training algorithm for TSVB networks, there are some further points of this imple-

mentation which require discussion.

The original intention behind S&A’s use of TSVB was for the phases to identify variable bind-

ings. This intention is preserved in the above definitions for two reasons: the phase number plays

no role in the computation of any phase’s activation, and information can only be passed between

phases through the non-pulsing units, which compute across all phases equally. The equivalence

of phases and variable bindings in the current implementation can be shown in the following way.

Variables are used in a representation to identify separate entities, and so distinguish information

about different entities. The definition of pulsing units is such that information on each phase is

kept independent from that on other phases. Thus, by inputting information to the network about

separate entities in separate phases, the pulsing units will compute information on separate variable

bindings. This property is maintained because the computation performed by the network does not

vary if a different phase (variable name) had been used for the input entity. The reason for this is

simply because, firstly, in no case is the actual phase number used in the computation. The pulsing

units compute in each phase independently of its number and other phases. Secondly, because the

weights applied by the links are not phase-dependent, the identical computation will be applied to

every phase in the time period. The only computation which applies across all phases is performed

by the non-pulsing units, and this combines activation from all phases equally. Finally, one implicit

assumption which should be noted is that no resource constraints apply to the number of phases in

any time period; a fixed network can therefore handle arbitrarily many entities.

However, the use of continuous activation values in TSVB networks also presents some difficul-

ties. In particular, in certain network architectures the presence of continuous activations can restrict

71

the ability of the network to generalise to increasing numbers of entities. This problem arises when

a non-pulsing unit receives activation from a pulsing unit. As the outputs from the pulsing unit are

real values, they will not be precisely 0 or 1, but, perhaps, 0.1 or 0.9. If the time period contains

a number of phases in which the output of the pulsing unit is 0.1, these can accumulate to exceed

the threshold value of the non-pulsing unit’s activation, perhaps set to 0.5. In other words, a large

set of near zeros can produce a similar response to a small set containing a one. One remedy to

this problem is to have no links from pulsing to non-pulsing units within the TSVB architecture.

This restriction is taken in Section 4.3 to define the Simple Synchrony Network, a subset of the

class of TSVB networks. An alternative, the probabilistic-or function, is discussed at the end of

Section 4.1.4.

This first section has shown how TSVB can be implemented in a manner consistent with the

standard connectionist framework, using units with continuous, differentiable activation functions.

The next section shows how a novel extension to Backpropagation Through Time can be derived,

which enables these TSVB networks to be trained.

4.1.2 Training TSVB Networks

Backpropagation Through Time (BPTT) [85] is a standard algorithm for training recurrent networks.

In this section, a novel extension of BPTT is developed for training recurrent TSVB networks.

When applying BPTT to a standard recurrent network one copy of the network is made for each

time step in the input sequence. Extending BPTT to TSVB networks involves making a further

copy of the network for every phase in the time period. The unfolding procedure is illustrated in

Figure 4.1, where a simple TSVB network (a) is unfolded over two time periods and two phases (b).

Note that both the pulsing and non-pulsing units are copied once per time period and that the pulsing

units (shown stacked) are copied additionally once per phase. As with standard BPTT the unfolded

network is a feed-forward network, and can be trained using backpropagation. However, every copy

of each link must be updated so as to have the same weight, by summing all the individual changes

to each copy of the link.

Weight-update equations for recurrent TSVB connectionist networks can be obtained by anal-

ogy with those for SRNs.

The TSVB network is trained on a sequential supervised learning task, so that at certain times

some unit outputs of the network should match those of a teacher. Define D(t) as the set of indices,

k, of units for which a specified target value exists. This target value will be d
k

(t) for non-pulsing

units and d
p

k

(t) for pulsing units; the latter requiring a target output to be specified for every phase,

p, of the time period, t. D(t) is assumed not to include any input or context units. The error for

each unit is defined as follows:

for a pulsing unit,

e

p

k

(t) =

(

d

p

k

(t)� o

p

k

(t) if k 2 D(t)

0 otherwise

for a non-pulsing unit,

e

k

(t) =

(

d

k

(t)� o

k

(t) if k 2 D(t)

0 otherwise

The target for gradient-descent learning is to minimise the sum-squared error of every unit in

the network over some sequence of time periods, [t
1

; t

2

].

72

Output

Hidden

Input

Context

(a)

Output

Input

Output

Input

Output

Input

Output

Input

(b)

T
im

e
P

er
io

d
 2

T
im

e
P

er
io

d
 1

Phase 1 Phase 2

Figure 4.1: (a) A Simple TSVB Network, with one pulsing and one non-pulsing unit in the hid-

den layer, and (b) the network unfolded over two phases and two time periods. Pulsing units are

represented by the stacked circles, and non-pulsing units the plain circle.

73

E(t) =

1

2

t

2

X

t=t

1

0

@

X

k2U

�

(e

k

(t))

2

+

X

k2U

�

n(t)

X

p=1

�

e

p

k

(t)

�

2

1

A

which yields the standard formula for the weight-update:

�w

ji

= �

@E(t)

@w

ji

= �

t

2

X

t=t

1

�

j

(t)o

i

(t)

In order to apply this to TSVB networks, account must be taken of the different types of units

in the network, i.e. whether the units i and j are pulsing or non-pulsing units.

for a pulsing unit, i 2 U
�

�w

ji

= �

t

2

X

t=t

1

n(t)

X

p=1

R

p

�

(j; t)o

p

i

(t)

where R
p

�

(j; t) =

(

�

j

(t) if j 2 U
�

�

p

j

(t) if j 2 U
�

for a non-pulsing unit, i 2 U
�

�w

ji

= �

t

2

X

t=t

1

T

�

(j; t)o

i

(t)

where T
�

(j; t) =

(

�

j

(t) if j 2 U
�

P

n(t)

p=1

�

p

j

(t) if j 2 U
�

To complete these equations, the error value for each unit is needed, and the equations are analo-

gous to those for recurrent networks. As before, the input units and context units require special

treatment. By definition, input units never have an error, and context units act as place-holders for

passing activation between time periods and not as computing units in their own right. Therefore,

context units are used during training to pass back to their associated hidden units the sum of the

error on the hidden units which they are input to, i.e. the error on a context unit for a pulsing unit j

in phase p of time period t is:

�

p

j

(t) =

X

l2U

w

lj

R

p

�

(l; t)

and the error on a context unit for a non-pulsing unit j in time period t is:

�

j

(t) =

X

l2U

w

lj

T

�

(l; t)

The error for all non-context and non-input units is the sum of three factors: its intrinsic error with

respect to any target output, the error fed back from units it is input to, and the error fed back from

the next time step of the network if the unit has a context unit. Account must again be taken of

whether the units are pulsing or non-pulsing:

for pulsing unit k,

�

p

k

(t) = o

p

k

(t)

�

1� o

p

k

(t)

�

0

@

e

p

k

(t) +

X

l2U

w

lk

R

p

�

(l; t) + �

p

C(k)

(t+ 1)

1

A

74

for non-pulsing unit k,

�

k

(t) = o

k

(t) (1� o

k

(t))

0

@

e

k

(t) +

X

l2U

w

lk

T

�

(l; t) + �

C(k)

(t+ 1)

1

A

U is the set of all units, and it is assumed that w
lk

= 0 if k 62 Inputs
l

and that �
C(k)

(t + 1) =

�

p

C(k)

(t+ 1) = 0 if t = t

2

or k does not have a context unit.

It is worth observing that the technique of ‘unfolding’ a network over time has great generality.

The basic intuition is that BPTT unfolds a network over a single dimension, which is interpreted

as ‘time’. This interpretation arises because separate copies of the links are constrained to have

the same weight, and can therefore be thought of as separate instantiations of the same link at

different times. In applying BPTT to TSVB networks, the use of BPTT has been extended to two

dimensions, one which is interpreted as time, and the second as phases within each time period. Note

that the weights of links to/from pulsing units are unfolded in both dimensions, and those of links

to/from non-pulsing units only in one of the dimensions (time). This process of extending BPTT

may be continued, in principle, to unfolding over arbitrary numbers of independent dimensions.

What is required is a sensible interpretation of these dimensions and how they will interact in a

computational model. This property is referred to in Chapter 6 where further work on representing

relations in TSVB networks is discussed. It has also been used in the Backpropagation Through

Structure algorithm [95] discussed in Section 2.3.3, in which the network is unfolded so that a

copy is made for each node within a structure, and links are made between copies to represent the

relations between nodes within the structure.

4.1.3 TSVB network architectures

TSVB connectionist networks are composed of two types of unit, pulsing and non-pulsing. This

means that a richer variety of architectures is possible than with standard connectionist networks,

which have only one type of unit. Two broad classes of network are considered in this section.

The first represents a direct introduction of TSVB units into the architecture of a Simple Recurrent

Network (SRN) [18]. The second describes a different interpretation of the network architecture,

extending the notion of non-pulsing units to the input layer itself, as well as incorporating the

architectural restriction of not permitting links from a pulsing to a non-pulsing unit, as discussed at

the end of Section 4.1.1.

In each case, the networks operate in an identical fashion, with the format for inputting informa-

tion to the network being only a little different to that in standard connectionist networks. Consider

a sequence of inputs ‘a b c ...’. With an SRN, these inputs would be presented to the network in

consecutive time periods, each input represented as a localist 1-in-n vector, i.e. one input unit rep-

resenting that symbol would be activated, and the rest not. Thus, in time period 1, the SRN would

receive symbol “a” on its input, and output information relevant to that symbol; in time period 2, it

would receive symbol “b” on its input, and output information relevant to that symbol, but based on

the whole sequence to that point, i.e. ‘a b’; and so on through the sequence.

The experiments in this thesis follow the same pattern of presenting input to TSVB networks

as with SRNs, with one difference. If the input units are pulsing units, then the symbol must be

input in a specified phase of the current time period. The procedure adopted here is to input each

symbol in a new phase, i.e. one unused by the input sequence to that point. Thus, in time period 1,

the TSVB network would receive symbol ‘a’ on its pulsing input units in phase 1; in time period

2, it would receive symbol ‘b’ on its pulsing input units in phase 2; and so on. This procedure is

also followed by those networks with both pulsing and non-pulsing input units. In such networks,

it is assumed that there is one pulsing unit and one non-pulsing unit for each input symbol, i.e. as

the input symbol is introduced in a new phase to its pulsing unit, it is also input to the network to

75

Figure 4.2: TSVB Networks: the block-shaped layers represent layers of pulsing units, the rectan-

gular layers are layers of non-pulsing units. The dotted links are copy links.

its non-pulsing unit. The input for the non-pulsing units operates in an identical fashion to that for

SRNs.

Once the data is input to the network, the rest of the network operates as defined in the previous

sections. Pulsing hidden units compute information about individual entities, and non-pulsing hid-

den units combine information about separate entities, computing information about the situation

as a whole. Finally, output is computed for the output units, which here are all pulsing units. This

output computes a value for each output feature for each entity so far input to the network. The con-

sequences of this are that the network can output complex structured information, and this ability is

explored in Section 4.1.5 and the experiments which follow.

Recurrent TSVB networks (1)

The SRN [18] extends the standard feed-forward connectionist network by adding context units.

Each context unit is used to hold a copy of the activation from the previous time step of its associated

hidden unit, thereby providing the network with a memory for previous states. Extending this

idea to TSVB networks suggests networks with pulsing context units, which provide a memory for

information that has been input about entities. Non-pulsing units are used to transfer information

between entities.

The question is where the non-pulsing units should go with respect to the context units. The

three possibilities (after, before and during) are shown in Figure 4.2. Network type 1 uses non-

pulsing units to transfer information between entities when determining the output for each entity.

Network type 2 transfers information between entities when that information is input. Network type

3 transfers information between entities at every point of the recurrent component of the network.

In addition, this last type provides a separate context layer of non-pulsing units, for information

applicable to every entity.

Recurrent TSVB networks (2)

It was pointed out at the end of Section 4.1.1 that links from pulsing to non-pulsing units cause

potential problems in generalising to large numbers of entities, and it might be worthwhile not to

use such links. This seems like a crippling restriction to make, because such links to non-pulsing

units are the only way to transfer information input to pulsing units between entities. However,

by using an additional input layer of non-pulsing units, and using these to input information about

entities that is relevant to other entities, a fully general computational architecture is retained. The

pulsing layer of input units is used, as before, to input information relating to individual entities. The

non-pulsing layer of input units is used to input information about any of these entities to accumulate

76

Figure 4.3: TSVB Networks with pulsing and non-pulsing inputs.

information relevant to every entity in the network. The precise input format used depends on the

particular problem being dealt with. In the experiments in natural language described below, the

non-pulsing inputs receive a copy of the information in the pulsing units, the separate words in the

sentence, so that information about the sentence as a whole can be built up.

Given separate pulsing and non-pulsing inputs, the question is at point information from the two

should be combined. Figure 4.3 illustrates the three possibilities allowed under the above restriction:

before the recurrent pulsing units, after the recurrence and both. If the combination occurs after the

recurrence, then a separate recurrence must be introduced for the non-pulsing units, as in types B

and C. The illustrated network architectures for these types use a combination layer to help combine

the pulsing and non-pulsing components of the network, but this added layer is optional.

There are some similarities between these two groups of networks with certain input representa-

tions. For instance, given that input activation is only supplied in a single phase in each time period,

the operation of network type 2 is similar to that of type A. Note that the type numbers and letters,

i.e. 1, 2, 3, A, B and C will be used to refer to the network architectures in Figures 4.2 and 4.3

throughout the rest of this thesis.

4.1.4 Short-term memory and other variations

Although the implementation of TSVB connectionist units presented in Section 4.1.1 appears the

most direct implementation of TSVB in a standard connectionist framework, there are a number

of variations and enhancements possible. The most important of these is the use of a bounded

queue of active phases (called the ‘short-term memory’) to reduce the time complexity of the TSVB

algorithm from being quadratic in the length of the input sequence to linear. Three subsidiary ideas

are also presented, each of which, although not explored in this thesis, is a legitimate avenue for

further research.

Short-term memory

The definition of TSVB connectionist networks as presented so far possesses an important source

of computational inefficiency. Specifically, for every entity that is introduced in the input, one phase

must be allocated for that entity within every subsequent time period. For applications involving

language, one entity, and therefore one additional phase, will be introduced to the network for every

word in the sentence. With samples of real language, the sentence lengths can become large and, in

cases where some phases are not required in later processing, it is inefficient to recompute unneces-

sary phases at every cycle of computation. The experiments later in this section will illustrate two

cases, one where every phase should be retained, and one where every phase is not necessary. The

question to be answered is, when can the network determine that a phase is no longer required? In

order to answer this question, some language-specific considerations are necessary. Specifically, the

77

limitations of the human cognitive system suggest an extension to the TSVB connectionist network

which can alleviate some of its inefficiencies in domains where human performance is a model.

Although TSVB connectionist networks in this thesis are basically presented as another algo-

rithm with which computers can be made to learn, it is useful to look to other fields for possible

extensions and improvements. Language is fundamentally a domain at which humans excel, and

so some of the insights gained from studies of human learning can legitimately be considered and

perhaps added to the algorithm. One of the more striking limitations of human mental abilities,

e.g. [16, 70], is the relatively small number of items which can be held in short-term memory

(STM). One application of this idea, developed by Baddeley [4], is the STM for verbal material,

known as the audio-loop. This loop allows for a maximum of three items to be stored in the STM,

and a decay mechanism means that older items will be removed from the loop unless refreshed by

an attentional mechanism. The proposal here is to adapt the concept of a verbal STM and apply it

to the TSVB connectionist network.

The present definition of TSVB connectionist networks uses a set of phases in each time period.

During each time period, these phases are considered in turn for computing the activation of the

pulsing units. The proposal here is to augment this model with a queue of ‘active’ phases, where

‘active’ refers to a phase which will be retained for computation at a later stage of the input sequence;

this queue of active phases will be referred to as the STM. Two processes govern the management

of STM, the first to add new phases to the queue, and the second to bring phases to the front of the

queue. Note that an individual phase is identified by its referent number.

� As each phase is introduced, its referent number is pushed on to the head of STM.

� For every phase referred to in the output during the current time period, that phase’s referent

number is moved to the head of STM.

To illustrate this process, consider an input sequence of three items ‘a b c’ with each item

presented to the network consecutively in phases 1, 2 and 3; let the computed output from all three

items refer to item “a” alone. After the first time period, STM will contain phase 1. In the second

time period, the introduction of phase 2 will add its referent number to the head of STM, leaving it

as ‘2 1’. The subsequent use of phase 1 on the output will move this phase’s referent to the head of

STM, leaving it in the state ‘1 2’. In the third time period, introducing phase 3 places its referent

at the head of STM, leaving ‘3 1 2’. Phase 1 is then referred to in the output, leaving STM as ‘1 3

2’ for the next time period. As can be seen, the order of items in STM reflect the recency and the

relevance of the phases; new phases and those referred to in the output will be constantly moved

to the head of STM. In this STM-TSVB connectionist network, each cycle of computation only

considers a fixed number of phases for computing the activation of the pulsing units; this means that

phases outside of the STM are ‘forgotten’, enhancing the efficiency of the network.

During training, of course, the actual outputs of the network will tend to be incorrect, and

therefore, if used for determining which phases should be placed into STM, this model would be

unable to learn correctly. Specifically, if a phase never makes it into STM, then no training error

can be propagated back in this phase. One way to address this problem is not to use the STM

during training. However, this is undesirable for two reasons: first, it would lead to a mis-match of

the network’s operation during training and testing, and second, the STM is proposed to alleviate

computational inefficiencies, which are most prominent during training. Therefore preferable is to

address the problem by using the network’s target output during training to determine the placement

of phases into STM. Thus, only the relevant phases will be present in STM, and so the error fed back

will be concentrated on these phases alone.

For applications to natural language, this STM-TSVB network is a very natural model due to its

bounded nature. Such bounds are prevalent in cognitive functions [16, 70], and so may be expected

78

in any higher-level domain related to a cognitive activity; a good survey of such ideas is presented by

Cowan [16]. Language parsing in particular is an example of a domain where cognitive limitations

may be important. For example, Henderson [36] has argued that a maximum of 10 phases are

required for parsing natural language. The way this functions is clearly demonstrated with noun

phrases. For example, ‘The fast blue car sped down the road.’ In parsing, all that needs to be

retained from the phrase ‘The fast blue car’ is the fact that a noun-phrase has been seen. In this

instance, the first word, “The”, introduces the constituent for the phrase. As the words of the phrase

are encountered, this constituent is continually moved to the head of STM, while intermediate words

(the adjectives), which are no longer required, move to the end of STM and will, given a long enough

sentence, be lost from consideration.

For TSVB networks, the use of STM has three important benefits:

� Speed : long sentence lengths cannot take up more computational time than allowed for by the

maximum size of STM, i.e. processing time becomes linear in the size of the input sequence

instead of quadratic.

� Cleaner output : fewer phases in the network means that there is less competition for the

outputs, and so spurious errors are less likely to occur.

� Cognitive plausibility : the STM is a requirement for any adequate account of language learn-

ing, and so, besides the computational benefits, adds to any cognitive attractions of the algo-

rithm.

The STM reduces the amount of computation which the network must perform by restricting

the number of phases on which computation is performed. A different mechanism has been used

to limit the amount of training within SRNs by restricting the number of unfoldings in each epoch,

e.g. Reilly [81]. However, this has the effect of preventing the network from learning dependen-

cies greater than the number of unfoldings provided (which is partly the intention, as explained in

Elman [21]). Long dependencies need not, however, be lost due to the STM’s bounded size. For

example, consider the case where a word near the end of the sentence refers to a word near the

beginning. The length of this dependency may exceed the length of STM, but if intermediate words

have referred to the earlier word, then it will have been moved to the head of the queue at various

points, and so need not necessarily be lost. The STM only loses dependencies in which no inter-

mediate references have occurred, so that the long distance reference is the only reference to occur.

As will be seen in Chapter 5, these are rare in the example corpus of natural language used in this

thesis.

However, there is one limitation to the use of STM, and that is with those TSVB architectures

where links are permitted from pulsing to non-pulsing units. In such a case, a later error fed back

to the non-pulsing unit should be distributed to every phase on the pulsing unit, and this cannot be

done with the definition given above. However, this limitation also coincides with the architectural

restriction discussed at the end of Section 4.1.1, and so the STM is only applicable with the type A,

B and C TSVB architectures described in part (2) of Section 4.1.3. (Although it can be used with

trained networks of the more general type.)

There is also a potential danger in attempting to use an STM indiscriminately, and that is in those

applications which require recall of, for example, long strings of numbers or non-related words.

The first of the toy grammars used below, an abstract version of the prepositional-phrase attachment

problem, is such an application, where the only reference to an earlier phase is made on seeing the

last input item, requiring every preceding noun to be retained. In this case, no claim is made for the

linguistic accuracy of the problem, the experiment being a test for one type of generalisation present

in TSVB networks.

79

However, it is possible, by pre-testing the training data, to determine how many phases a TSVB

network should require when operating optimally. This means that, firstly, a TSVB network with

STM can be configured to use an optimal number of phases for any given task. And secondly that

tests can be made on some of the computational requirements for a domain such as language, e.g.

the amount of working memory required for effective learning and performance.

Other variations

There are a number of other possible variations, and in this section three variations which were

considered at some stage of this thesis are presented briefly. Each of these is a plausible avenue

for further development in exploring to the full this class of TSVB connectionist networks, and, of

course, others may be thought of.

Firstly, the definition of the non-pulsing units is such that information is combined across each

phase before passing the result through a sigmoid function. However, the role of the non-pulsing

unit is to compute information across all phases, about all the entities together. This can be achieved

in a simpler manner by using non-pulsing sum-units, which output their net input, the sum of their

input in all phases. This removes the need for the scale factor, o
k

(1 � o

k

), in the weight update

equations, and so error is not diluted during backpropagation through non-pulsing units. However,

an adequate arrangement of pulsing units is required to compensate for the lower computational

power of the non-pulsing sum-units.

Secondly, it was noted that the use of continuous activation values in TSVB networks can lead to

problems with links from pulsing to non-pulsing units. These problems arise where an accumulation

of near zero outputs from a pulsing unit are summed over the time period by a non-pulsing unit and

so exceed its threshold value. One solution is not to permit this type of link in the architecture, and

this restriction is part of the definition of the Simple Synchrony Network. Alternatively, a function

on the non-pulsing unit’s input can be used to correct, or at least disguise, this problem. Such a

function should replace the standard addition function with one which biases the sum of its inputs

to 0 or 1. One example is the probabilistic-or function, defined as:

A+B �AB

where A and B are two inputs (the result can be doubled to produce output in the same range as

standard addition). The idea would be to use this instead of the standard summation function when

computing the net input across the time period for the non-pulsing unit.

The probabilistic-or function is associative, and therefore generalises to increasing numbers of

phases. Also, it has the property of stretching the input values towards the extremes, i.e. adding a

bias away from values near 0.5. Therefore, this function can be used to encourage noisy internal

representations to take up values closer to binary values, a tendency which can be increased by

taking fixed powers of A and B before applying the function. Further, the function is continuous

and differentiable, and so can be incorporated into the weight update equations. However, this is

only an ameliorating device: in order to entirely remove the problem of pulsing to non-pulsing unit

links, a fully binary internal representation should be used. This, however, returns to the original im-

plementation of TSVB for SHRUTI, and the impossibility of using standard connectionist training

algorithms.

A further variation would be to remove the restriction that phases are computed independently

of each other. The current implementation is motivated by the identification of phases with vari-

ables, and variables in logical propositions are independent of one another. However, removing

this restriction enables the network to combine information about entities in a time-dependent way,

supplementing the interaction of entities provided in the non-pulsing units.

80

4.1.5 Representing structure with TSVB networks

When discussing the limitations of previous connectionist attempts at handling structured repre-

sentations in Chapter 2, an argument was made for a new connectionist architecture for handling

mappings between sequences to directed acyclic graphs, such as parse trees. A similar argument

was made in Chapter 3 with respect to connectionist approaches to natural language parsing. This

section demonstrates that TSVB networks can answer these problems, that TSVB networks can

convert input sequences into output representations for parse trees.

Before starting, two basic features of the input-output format in TSVB networks need empha-

sising. First, in all six of the TSVB network architectures illustrated in Section 4.1.3, the output

layer is composed of pulsing units. In what follows, all output values are assumed to be thresholded

to simple 0s and 1s, because the forms of structured representation considered do not require con-

tinuous output activations. Second, output is generated on these pulsing units in response to each

element in the input sequence. In order to appreciate the class of output representations supported

by TSVB networks, it is worth calculating just how much information may be output for a given

input sequence. (This analysis deals with the standard TSVB network first, i.e. there is no STM

bound on the number of phases.)

As described in Section 4.1.3, each element in the input sequence is presented in a new, pre-

viously unused phase. This input representation is basically the same as the standard SRN, i.e. it

is a pure representation of sequences, with consecutive elements in the sequence presented in con-

secutive time periods. However, with TSVB networks, the pulsing inputs convey an extra piece of

information: the phase in which the element has been input. This use of different phases allows

each input element to be a separate entity within the output structure.

In the first time period, only one phase has been introduced to the network, and so output can

only be computed for one entity. In the second time period, two phases have been introduced to the

network, and so output can be computed for two entities. Similarly, in the nth time period, output

can be computed for n entities. By summing all these elements, O(n2) outputs are computed for

a sequence of length n. This contrasts strongly with the SRN, which can only provide one set of

output during each time period, and so only O(n) outputs can be computed for a sequence of length

n.

The next question is, What to do with these extra outputs? As discussed in Chapter 3, there are

several kinds of parse tree, ranging from basic taggers to highly structured, hierarchical parse trees.

The basic tagger is exemplified by the SRN. In this case, only one item of information is required

for every input word, and so the extra information provided by TSVB is not required. A second type

represents simple relations between words, with two pieces of information required from the parser:

one about the current word and the other about any previous word to which it is related. This second

type of representation is comfortably handled by the TSVB networks. The information about the

current word is output in the same phase as the current word and the information about its relation

is output in the phase of the word to which it is related. For example, the structure illustrated in

Figure 4.4(a) has links from the second to the first items and from the fourth to the second items.

When computing about the fourth item in the sequence, the item will have been input on phase 4

and the computation would be proceeding in time period 4. Information about the fourth item, such

as its syntactic class, would be output during phase 4 of the current time period; information about

the relation of the fourth item to the second would be output during phase 2 of the current time

period, and no activation would be produced in all other phases (i.e. 1 and 3).

Although the output of relations is interesting, the resulting structure is still relatively ‘flat’.

More interesting parse trees, such as those used in statistical and classical parsers, include hierar-

chical arrangements of information. Such hierarchies can also be output by TSVB networks. The

key idea is to allow the network to output a relation between its current input and the new phase:

81

Figure 4.4: Some sample structures which can be output by TSVB networks.

this is not difficult, as output units for relations will be present for indicating relations to previous

phases, and so these same outputs are simply allowed to provide information in the new phase as

well. This phase can now be considered as a node within a parse tree. For example, the tree in

Figure 4.4(b) shows an input sequence of three items, ‘a b c’, and an associated structure with “1”

as the tree’s root node. This structure may be input in the following manner. First, when “a” is

input, the network indicates a relation with phase 1: this is the new phase, and is interpreted as a

new node in the tree with the input “a” attached to it. Second, “b” is input. The network indicates a

relation with phase 2, which is interpreted so that input “b” is attached to the new node; the network

also outputs a relation with phase 1, which is interpreted so that the new node is attached to that

introduced in the first time period. Similar occurs with the third input, producing the illustrated

tree structure. It is also possible to label the nodes within the tree: in addition to output units for

relations, output units are included for possible labels. The label for the node introduced by the new

phase is then output on the label outputs in the new node’s phase.

This interpretation of the pulsing outputs has one inherent limitation: all relations must be

between the node introduced by the new phase and either some other node or the current input. This

forces the output of the TSVB network to be incremental, outputting every relation between its new

phase and any earlier phases. This does not prevent some interesting trees from being output, such

as illustrated in Figure 4.4(c). Note that these trees require the direction of the relation between the

new phase and the earlier phase to be indicated, which can be done by providing separate output

units for the two cases (either the new phase is the parent node or the old phase is the parent node).

This demonstration that TSVB networks can output incremental representations of parse trees

makes it clear that the new architecture has met its major theoretical goals of being capable of gener-

ating parse trees from an input sequence of words. The experimental sections of this thesis basically

validate that this ability to generate parse trees from input sequences can be learnt. This chapter

continues with experiments using two toy grammars. The first toy grammar uses the simpler type

of structure, as in Figure 4.4(a), to indicate which noun in a sentence is referred to by a preposi-

tional phrase. This grammar tests the ability of TSVB networks to generalise a relation learnt for

particular lengths of sequence to longer lengths. The second toy grammar requires the networks to

generate a more complex hierarchic representation. This grammar tests the ability of TSVB net-

works to generalise across specific features of the output structure. The next chapter introduces a

more representation for parse trees, and discusses how the class of representations achievable by the

TSVB network compares with representations for describing real natural language corpora.

Finally, it should be noted that this chapter focuses on testing the basic TSVB network with no

resource bounds. The next chapter uses the STM to limit the computational demands of learning to

parse from samples of real text. However, the use of the STM means that, instead of O(n2) items of

information being output by the TSVB parser, only O(n) items will be output. This, however, does

not limit TSVB networks to equivalent representations to SRNs. The apparent anomaly is readily

resolved by considering that TSVB adds to the SRN the ability to refer to any entity in the output,

and so generate relations between nodes and words within an evolving parse tree. However, the

number of such relations that are required in a given sentence is only a small subset of the total

82

possible. In such a case, it is possible to consider resource limitations in line with the restricted

possibilities of the domain. These restricted possibilities arise, in language, in two ways. First,

the number of relations that might be output at one point will be limited by the number of phases

in the STM. Second, the number of words which must be maintained in memory because they are

needed in a relation at a later point in the sentence. The fact that each of these bounds is a feature

of natural language is due to the domain’s cognitive nature, and is a point returned to in Chapter 6

when discussing the importance of the STM.

It is also worth emphasising that the TSVB network with STM is capable of generalising over

entities, as discussed in Section 2.3.5, because it uses time to represent the relations in the parse tree.

This generalisation ability is an inherent property of the TSVB connectionist framework [37], and

is additional to the generalisation abilities of the basic SRN. Section 2.3 contained more discussion

on the value both of representing structure and of taking advantage of the generalisations implied

by that structure.

Next, the performance of the TSVB networks is empirically validated on two toy grammars

which each illustrate the representation of structured outputs and test for different generalisation

abilities in the networks.

4.2 Experiments on Specific Generalisations

This section presents results from experiments training the different TSVB network architectures

from Section 4.1.3 to parse sentences from two toy grammars. The grammars are chosen to highlight

specific kinds of generalisation which arise when handling structured information. These include

the ability to handle increasing numbers of entities and the ability to generalise across structure.

These generalisations are important because they can occur only in networks handling structured

information, such as the TSVB networks, and so are not naturally present in standard recurrent con-

nectionist networks. It is assumed that the generalisation ability of recurrent networks is retained in

the TSVB networks. This is because the only difference between the TSVB network and the SRN

is its use of phases within each time period to represent separate entities; by presenting every input

item within the same phase, the TSVB network will function identically to a standard recurrent con-

nectionist network (although small differences may be observed due to the arrangement of hidden

units).

The first experiment in this section uses an abstracted form of the prepositional-phrase attach-

ment problem, which requires the network to select the noun in a sentence modified by the preposi-

tional phrase. The objective of this experiment is to test the ability of TSVB networks to generalise

across increasing numbers of entities. It also illustrates how TSVB networks can output a simple

structure based on relations, as shown in Figure 4.4(a). The second experiment uses a recursive

grammar, and follows the experiments performed by Hadley and Hayward [33]. This experiment

tests the ability of TSVB networks to generalise across syntactic positions, i.e. to generalise across

structured information. This experiment also illustrates how TSVB networks can output a hierarchic

output structure, as shown in Figure 4.4(b).

The aim of these experiments is two-fold: first to ensure that TSVB networks can learn gener-

alisations in the expected manner, and second to determine whether different network architectures

produce different levels of performance. As will be seen, the experiments do demonstrate an ability

to learn appropriate generalisations and also show that one type of architecture is superior in the

levels of performance achieved.

83

4.2.1 Learning generalisations across multiple entities

This first experiment uses an abstract version of the prepositional-phrase attachment (pp-attachment)

problem to test for an ability to learn generalisations across multiple entities. This section defines

the pp-attachment problem and gives experimental results from training several examples of each

of the six TSVB network architectures on this task. These results enable comparisons to be drawn

between the various TSVB network architectures.

Prepositional-phrase attachment

The problem of pp-attachment is illustrated by the classic phrase ‘The silly robot saw the red pyra-

mid on the hill with the telescope’ (e.g. [105]), where the prepositional phrase “with the telescope”

must be attached to one of the preceding nouns: should it be attached to “robot”, “pyramid” or

“hill”? From a linguistic perspective, the problem of pp-attachment is resolved through many inter-

acting constraints, both syntactic and semantic. These kinds of constraint, involving an interaction

of the statistical significance of different options, are of the sort which connectionist networks are

good at, given enough training data. In order to bring out the difference between the TSVB net-

works and SRNs, an abstracted form of the problem is used in which the relevant constraints are

readily acquired by the TSVB network during training. However, the aspect of these experiments

which makes them difficult for standard connectionist networks is the problem of reference, where

a given prepositional phrase must indicate which from a preceding set of nouns it refers to: this

experiment therefore requires the TSVB networks to output a simple form of parse tree, like that

illustrated in Figure 4.4(a). In testing, the TSVB networks will be required to generalise what has

been learnt about a particular size of input phrase to larger ones, i.e. the networks must generalise

to an increasing set of entities.

The abstracted version of pp-attachment used here highlights the problem of reference. The task

is simplified to one involving two types of noun and a single prepositional phrase, abstracting away

from other words. The prepositional phrase can modify (attach to) nouns of one type (called N
1

) but

not the other (called N
2

). For simplicity, one input is used per type, n
1

for N
1

, n
2

for N
2

, and p for

the prepositional phrase. Phrases consist of a string of n
1

’s and n
2

’s, possibly followed by a p. The

problem of pp-attachment is to determine which of the nouns in a sample phrase the prepositional

phrase, p, should modify. For example, in the phrase ‘n
2

n

1

n

2

p’, p must modify the second of the

three nouns.

Three variations of this problem are considered here, all using the same input-output format.

Three input units are used, n
1

, n
2

and p, and three output units N
1

, N
2

and m. The m output is

used to indicate the modified noun. The input phrase is presented to the network in consecutive time

periods, one word at a time, and each word is introduced in a previously unused phase of the current

time period (as well as to any non-pulsing inputs). Output is computed for that word in the current

time period, and then the next word is presented in the next time period. Activation on the output

units has a different purpose for noun classes and the m outputs. These are illustrated in a trace of

a sample phrase, shown in Table 4.1.

The numbers in each column of Table 4.1 indicate the phase number on which that unit is active.

In the first time period, n
1

is presented on the inputs, indicated by activating n
1

in phase 1 (for the

pulsing units, if any non-pulsing units are present, then they also receive input). The output for this

time period is the classification N
1

, indicated by activating output unit N
1

also in phase 1. In the

second time period, n
2

is presented on the inputs in a new phase, indicated by activating n
2

in phase

2. The output for N
2

is activated in phase 2, and that for N
1

in phase 1 is carried forward. In the

third time period, p is presented on the inputs, indicated by activating the input unit p in phase 3. The

output for m is activated in the phase of the noun which p is modifying, i.e. phase 1. The outputs

for N
1

and N
2

are again carried forward in their respective phases. The final output therefore shows

84

Input Output

Period n

1

n

2

p N

1

N

2

m

1 1 1

2 2 1 2

3 3 1 2 1

Table 4.1: Trace of input-output representation for the phrase ‘n
1

n

2

p’.

Time Period Pulsing Inputs Non-pulsing Inputs Outputs

Phase Phase

1 2 3 1 2 3

1 n

1

n

1

n

1

2 n

2

n

2

n

1

n

2

3 p p n

1

;m

Table 4.2: Extended trace of input-output representation for the phrase ‘n
1

n

2

p’. Note that the

column for non-pulsing inputs is optional.

the classes of the different nouns, with the m output unit referring to one of these nouns – the noun

modified by p. Note that this extends naturally to longer phrases; a second appearance of n
2

in

period 3 would be indicated by activating the relevant input unit in phase 3, and the output for N
2

would be active in both phases 2 and 3 in subsequent time periods.

This representation may perhaps be made clearer by considering the extended trace of the sam-

ple phrase in Table 4.2, which shows the active input and output units in each phase of each time

period. The units are referred to by name, and it is assumed that within the specific set of inputs or

outputs referred to, only the named unit is active, and all other units are inactive; this corresponds to

the standard 1-in-n vector representation, although in rare cases more than one unit may be active

in a given phase, as occurs in the last line for the output in phase 1 in the example. The table has

four major columns. The first gives the time period, the second represents the bank of pulsing input

units, the third the bank of non-pulsing input units, and the fourth the bank of pulsing output units.

Note that the third column, describing the bank of non-pulsing input units, only applies to network

types A, B and C; for types 1, 2 and 3 this column should be ignored (the network types refer to the

figures in Section 4.1.3). Within each column, separate columns specify individual phases.

The representation relies on the m output unit, a pulsing unit, to make a reference to a specific

noun selected from a set of nouns forming the earlier part of the phrase. The referent noun is

determined by the particular function which the network has been trained to compute for making

this selection. The object of these experiments is to test whether this learned function is generalised

to a larger set of nouns. In principle, this generalisation should be inherent to the TSVB network

because all that varies within the network for a larger set of nouns is the number of phases within

the time period; the weights used by the network to compute which noun it is referring to, and the

units on which to indicate the referent, are the same for every phase in that time period. Therefore

the network is expected to generalise to increasing numbers of entities, and this is tested in the

experiments by varying the size of the set of nouns from which this selection is to be made between

training and testing. In order to avoid any biases of the network towards certain selection functions,

the criteria for selecting a noun from the input set are also varied.

The first of the three experiments uses the simplest selection criterion; only one example of

85

the first class of nouns, which p does modify, can appear in any phrase. The network’s ability to

generalise to greater numbers of entities is tested by adding an increasing number of nouns of the

second class (which p does not modify) to the phrase. The network is trained on all phrases up to

a certain length, e.g. the set of phrases up to length 3 is: ‘n
1

’, ‘n
2

’, ‘n
1

p’, ‘n
1

n

2

p’, ‘n
2

n

1

p’. In

testing, the network is presented with phrases of increasing length. The network’s performance on

increasing lengths of phrase is then measured.

The second and third experiments use more complex selection criteria, allowing more than one

noun of the first class (which p can modify) to appear within the phrase: the second experiment

requires the network to learn that p always modifies the most recent n
1

in the phrase, and the third

that p always modifies the first of these nouns. The training sets for these experiments consist of all

phrases up to length 3. In both cases adding the phrase ‘n
1

n

1

p’ and all phrases with three nouns

to the training set given above for the first experiment. Again, the test set requires generalisation

to phrases with more than 3 nouns. For example, the phrase ‘n
1

n

2

n

2

n

1

p’ requires the network to

attach p to the last n
1

in the second experiment, and to attach p to the first n
1

in the third.

Experimental results

All of the TSVB network architectures described in Section 4.1.3 were trained and tested on all

three versions of the pp-attachment task. In each case, several network sizes were trained for each

architecture, and, for each size, three networks were trained, each with a different seed for randomly

creating its initial weights. A constant learning rate, � = 0:05, was used for all networks. Training

proceeded in all cases until the network’s output for every training phrase was within 10% of its

correct value; though in some cases the networks did not converge. Results are reported by giv-

ing the network’s type and size (all layers had the same number of units), the average number of

epochs required in training (a ‘+’ sign by the number of epochs indicates that not all the networks

converged), and the average number of errors in the output when tested. The activation value of a

given output unit is counted as an error if its value is more than 40% from its target value. Results

are shown separately for the noun-type outputs (N’s) and the modifier output (m).

The detailed results are contained in the following tables:

Simple Two sets of experiments were run for the simplest case, where only a single modifiable

noun may appear in the phrase. The first (experiment 1a) trained the networks on phrases up

to length 3 (i.e. phrases with up to two n’s and one p), testing on phrases of up to length 8 (i.e.

phrases with up to seven n’s and one p). Results from this experiment are shown in Table 4.3.

The second (experiment 1b) trained the networks on larger phrases, up to length 6, testing on

phrases of up to length 11. Results from this experiment are shown in Table 4.4.

Recency This experiment requires the network to learn that the prepositional phrase should only

be attached to the most recent modifiable noun in the phrase. The training set consists of

all phrases up to length 4, including phrases with more than one example of n
1

; the p must

modify the last n
1

in the phrase. The networks are tested on progressively longer phrases,

containing up to 6 nouns. For example, the phrase ‘n
1

n

2

n

2

n

1

p’ requires the network to

attach p to the last n
1

. Results are shown in Table 4.5.

Anti-recency This experiment is identical to the previous one, except that the network must learn

to attach the prepositional phrase to the first modifiable noun in the phrase. The training set is

identical, with all phrases of up to length 4, but p must now modify the first n
1

in the phrase.

Results are shown in Table 4.6.

86

Network Training Test Phrase Length (% correct)

Size Epochs 5 6 7 8

N’s m N’s m N’s m N’s m

Type 1

No network converged during training

Type 2

3 633 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 367 100.0 100.0 99.5 99.4 99.2 99.6 99.0 99.0

Type 3

3 1031 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 715 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 471 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Type A

3 403 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 340 100.0 100.0 100.0 100.0 100.0 100.0 99.3 97.5

10 263 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Type B

3 1067 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 403 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 287 100.0 100.0 100.0 100.0 100.0 100.0 99.3 97.6

Type C

3 675 100.0 100.0 99.2 99.4 97.8 96.3 96.5 93.3

6 450 100.0 100.0 100.0 99.4 99.7 97.2 99.7 97.6

10 293 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 4.3: Experiment 1a: networks trained on phrases up to length 3. Test phrases of length n

contain n � 2 n

2

’s with a single n
1

in all possible arrangments, followed by the p. Results are

averaged over three networks.

Discussion

Experiment 1 contains the cleanest test for the ability of TSVB networks to generalise to increasing

numbers of entities. However, the strict requirements of the task make this a difficult problem for

the networks: the network’s only function is to memorise the list of input entities, and then select the

appropriate one on seeing the prepositional phrase. In order for the recurrent part of the network to

memorise the list effectively, high weights must be learned on the recurrent links. This is easier with

longer training sequences, which explains the superior performance of the networks in experiment

1b (Table 4.4) over those in experiment 1a (Table 4.3).

In experiment 1a (see Table 4.3) most of the network types coped fairly easily with this task. The

exception being networks of type 1. These networks, during training, reached a static performance

level, with only a small continued decrease in output error: for example, a network with 3 units in

each hidden layer, after 3,700 epochs, possessed 36 N-type errors (errors on the N
1

and N
2

outputs

only) and 12 m-type errors (errors on them output only) with a sum-squared error of 16.9. A second

attempt was made using a lower learning rate of � = 0:005, to facilitate gentler learning. This led to

some improvement, but still no fully trained networks were achieved. For the other network types,

some of the networks reliably produced perfect generalisation to the various test sets. In particular

87

Network Training Test Phrase Length (% correct)

Size Epochs 8 9 10 11

N’s m N’s m N’s m N’s m

Type 1

No network converged during training

Type 2

3 203 100.0 100.0 99.6 97.5 98.2 92.1 96.3 88.9

6 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Type 3

No network converged during training

Type A

3 430 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 65 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 52 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Type B

3 171 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 69 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 53 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Type C

3 190 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 100 100.0 100.0 100.0 99.8 100.0 99.2 99.8 98.5

10 50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 4.4: Experiment 1b: networks trained on phrases up to length 6. Test phrases of length n

contain n � 2 n

2

’s with a single n
1

in all possible arrangments, followed by the p. Results are

averaged over three networks.

the type 3 architecture produced perfect generalisation in all cases.

For experiment 1b (see Table 4.4) a similar pattern to that in experiment 1a was seen. However,

the type 3 networks now failed to learn the task at all, in a similar fashion to that of the type 1

networks. Training failed to produce any improvement after a certain point, and the process was

terminated: for example, with a network with 3 units in each hidden layer, a reduced training rate of

� = 0:005 was used to try to encourage gentler learning, but after 84,100 epochs performance was

only 29 errors out of 645 outputs, with a sum-squared error of 13.00. When tested, this network

produced no errors for the length 7 test set, and then 10 errors for the length 8, and more for the

other lengths. For the other network types, performance was enhanced over that in experiment 1a;

as can be seen, these levels were very good, with few networks producing any errors at all.

In experiment 2 (see Table 4.5), neither the type 1 nor type 3 networks produced any success-

fully trained networks. This task is obviously a more complex one for the rest of the networks,

and no network size produced a reliably perfect generalisation performance, although in all cases

performance was in excess of 90%. However, one example of type 2 (with 10 units in each layer),

two examples of type A (one with 3 and one also with 10 units) and one example of type C (with 6

units in each layer) did produce perfect generalisation across the three test sets.

As with experiment 2, in experiment 3 (see Table 4.6), neither the type 1 nor type 3 networks

produced any successfully trained networks. Again the task is a more complex one for the rest of

88

Network Training Test Phrase Length (% correct)

Size Epochs 5 6 7

N’s m N’s m N’s m

Type 1

No network converged during training

Type 2

3 10933 99.8 97.0 99.7 96.0 99.3 95.5

6 730 100.0 100.0 100.0 99.8 100.0 99.6

10 533 100.0 99.7 100.0 99.3 100.0 98.9

Type 3

No network converged during training

Type A

3 18766.7+ 100.0 100.0 100.0 99.8 99.7 99.3

6 750 100.0 100.0 100.0 99.7 100.0 99.3

10 276.7 100.0 99.7 100.0 99.4 100.0 99.1

Type B

3 1883.3 100.0 99.5 99.0 97.3 97.4 91.6

6 953.3 100.0 99.0 100.0 99.0 100.0 97.3

10 803.3 100.0 99.2 100.0 97.0 100.0 95.9

Type C

3 466.7 100.0 100.0 99.7 100.0 99.2 100.0

6 400 100.0 99.7 100.0 99.2 100.0 99.2

10 466.7 100.0 99.5 100.0 98.7 100.0 97.4

Table 4.5: Experiment 2: with recency. Test phrases of length n consist of all possible arrangements

of n
1

’s and n
2

’s followed by the p. Results are averaged across 3 networks.

89

Network Training Test Phrase Length (% correct)

Size Epochs 5 (/675) 6 (/1953) 7 (/5292)

N’s m N’s m N’s m

Type 1

No network converged during training

Type 2

3 2400 100.0 98.6 100.0 97.0 100.0 95.0

6 683 100.0 100.0 100.0 95.5 100.0 89.2

10 483 100.0 99.5 100.0 97.5 100.0 95.0

Type 3

No network converged during training

Type A

3 3400+ 98.9 95.3 98.0 91.4 97.2 87.6

6 433.3 100.0 99.5 100.0 98.1 100.0 97.2

10 400 100.0 99.3 100.0 95.8 100.0 80.2

Type B

3 1733.3 100.0 96.5 100.0 94.3 99.5 91.7

6 433.3 100.0 97.8 100.0 97.6 99.5 97.3

10 803.3 100.0 98.0 100.0 94.8 100.0 91.4

Type C

3 500 100.0 98.7 99.5 98.1 98.1 97.2

6 333.3 100.0 98.5 100.0 96.7 99.7 94.9

10 300 100.0 98.3 99.9 95.8 99.3 94.1

Table 4.6: Experiment 3: with anti-recency. Test phrases of length n consist of all possible arrange-

ments of n
1

’s and n
2

’s followed by the p. Results are averaged across 3 networks.

90

Outputs

Phase Word S Su V Ob R

1 <start> 1

2 Jane 1 2

3 who 2 3

4 calls 4 3

5 Vicky 5 3

6 knows 1 6

7 Mary 1 7

8 who 7 8

9 likes 9 8

10 Bill 10 8

11 who 10 11

12 helps 12 11

13 Jane 13 11

Table 4.7: Trace of a sentence parse with embeddings (the numbers under the output units indicate

in which phase that output unit is on; no number means the unit is off throughout the time period).

the networks, and no network size produced a reliably perfect generalisation, although in most cases

performance exceeded 90%. The best individual performances included one example of type 2 (with

10 units in each layer) which only produced a single error in the last test set, and one example of

type A (with 6 units) which produced only one error in the test set of length 6 and seven errors in

the test set of length 7.

The first question these experiments were intended to answer was whether any TSVB network

could generalise across increasing numbers of entities. This has been demonstrated with the results

particularly in experiment 1b. The last two experiments tested this same ability but requiring a

more complex function to be learnt, and this obviously caused some problems to the networks.

However, both the type 2 and the type A produced some networks which generalised well, although

not reliably so across different weight seeds.

The second question for these experiments was whether there was any empirical difference

between the different network architectures. Again, the answer has to be yes. The most dramatic

difference being the failure of the type 1 and type 3 networks to handle the problems at all. This in

spite of type 3’s success on experiment 1a. For the other network types, there is not a significant

amount of difference: all use roughly similar amounts of training, and produce similar patterns of

generalisation results. The fact that the type 2 and type A networks do slightly better on the final

experiments is interesting, but not conclusive: they also happen to be the simpler of the network

types, and this fits with the usual trend in connectionist networks, i.e. the smaller networks tend to

generalise better.

The fact that some of the network architectures do learn this task well demonstrates that TSVB

networks can generalise to increasing numbers of entities. In the next set of experiments, a more

complex grammar is used to test these networks for a different set of generalisations.

4.2.2 Learning generalisations across syntactic constituents

A more complex toy grammar was used by Hadley and Hayward [32, 33] to test whether a specific

Hebbian connectionist network learns in accordance with the property of strong semantic system-

91

aticity. Their recursive grammar is given in Figure 2.9 of Section 2.3.4 and can be used to test for

two particular kinds of generalisation. Firstly, the network can be tested for an ability to recognise

a substitution of words of the same syntactic class. This occurs, for example, when a noun seen

only in subject positions of training sentences appears in the object position of a testing sentence;

information about that noun should be generalised to the noun in the new syntactic category if other

nouns have been observed to appear in both subject and object positions. Secondly, the network

can be tested for an ability to recognise a recursive structure. For example, after learning about

sentences with a single relative clause, generalisation should occur to test sentences with multi-

ple relative clauses. These two generalisation abilities are like those in compositional grammars,

and the experiments here follow Hadley and Hayward’s procedure (described in Section 2.3.4) for

testing a network for them. In addition, this experiment requires the TSVB networks to output a

hierarchical form of parse tree, like that illustrated in Figure 4.4(b).

By analogy with Hadley and Hayward, target input and output representations are defined as

follows. There are 22 binary input units, each one representing a separate word. Five output units

are used: ‘S’ (representing sentence), ‘Su’ (subject noun), ‘V’ (verb), ‘Ob’ (object noun) and ‘R’

(relative pronoun). The target output for a sentence is an incremental representation of its parse tree,

so that the combination of all the outputs for all the words in the sentence will form the output parse

tree. For example, the sentence ‘Jane who calls Vicky knows Mary who likes Bill who helps Jane’

will be processed as follows (refer to Table 4.7).

The sentence is begun by activating the relevant input unit of the network for the input symbol

‘<start>’ in time period 1 in an unused phase, phase 1 in the table (as well as to its non-pulsing

input, if any). This introduces the phase for the root or ‘S’ node in the parse tree, and also resets

the network. The first word ‘Jane’ is then input in time period 2 in the next unused phase, phase

2, by activating the relevant input unit, and, as this introduces a subject noun, the ‘Su’ output unit

becomes active in phase with the input word. Also, as the noun is part of the main sentence, it

is attached to the ‘S’ node in the parse tree, and this is indicated by activating the ‘S’ output in

phase with the ‘<start>’ symbol. As the table shows, each word in the sentence is associated with

a unique phase number, because it is introduced to the network in a new, previously unused phase.

This phase number is used by the output units to indicate precisely which word in the sentence the

current output is related to. This representation makes clear how embedded clauses can use the same

set of output units and yet unambiguously identify the appropriate embedding level. For example,

the verb “helps” in phase 12 is part of the relative clause introduced by the “who” from phase 11,

which is modifying the noun “Bill” in phase 10.

Experiments analogous to those described in Section 2.3.4 from [33] were performed. The

recursive grammar from Section 2.3.4 was used to generate a training set of 1370 sentences, either

simple or with one relative clause. Only four of the twelve nouns were permitted to occupy any

syntactic position, four were constrained to appear in subject position, and four object position.

In addition, only 25% of the training set was composed of sentences with one relative clause, the

other 75% being simple sentences with no relative clauses. After training, each network is tested

on a set of 6000 sentences, comprising 1500 sentences with equal numbers with zero, one, two, or

three levels of embedded relative clauses and nouns occupying any legal position; no sentence in

the training set can appear in the test set.

The networks were trained with a learning rate, �, of 0.05 and an output tolerance of 0.1 (10%).

Table 4.8 shows the experimental results: the network size is followed by the number of epochs

required (an X indicates those networks did not converge). For the test set of 6000 sentences, the

percentage of errors at the 40% level are given. All results are the average of three networks of the

same size but different weight seeds.

With these experiments, networks of types 1 and 3 did not converge during training. The per-

formances of the four network types are all quite close, though types B and C produce about half

92

Network Size Training Epochs Percentage correct

Type 1

No network converged during training

Type 2

5 X 0.0

8 33 96.5

12 13 98.0

Type 3

No network converged during training

Type A

5 (2 nets) 150 95.2

8 32 97.4

12 17 98.0

Type B

5 25 98.8

8 18 98.5

12 12 98.1

Type C

5 7 98.2

8 13 98.8

12 6 98.3

Table 4.8: Results for recursive grammar experiment: figures given are averaged across three net-

works.

93

the number of errors of types 2 and A. The important conclusion from this experiment is that the

networks do generalise very well to the test set. As discussed in Section 2.3.4, the grammar and the

training and test sets are used by Hadley and Hayward to test for evidence of generalising across

syntactic structures. The test set contains sentences with words in novel syntactic positions and

also with a greater depth of recursive structure. The performance of the TSVB networks on this

problem demonstrate that they can handle generalisations across syntactic structure. As a connec-

tionist architecture, they may also be compared with the Hebbian connectionist network introduced

by Hadley and Hayward [33] specifically to learn these types of generalisation. This point was

discussed in Section 2.3.5. (This experiment, with some early results, was described in [54].)

4.3 Conclusion: Defining the Simple Synchrony Network

This chapter has presented a new implementation of Temporal Synchrony Variable Binding (TSVB),

which defines TSVB units with differentiable activation functions. A novel extension of Backprop-

agation Through Time has been developed, which enables such TSVB networks to be trained, and

a range of such TSVB network architectures has been described. Using two toy grammars, gen-

eralisations specific to TSVB networks have been tested, and it has been seen how the different

architectures achieve different performances. In particular, the restriction that no pulsing unit can

provide input activation to a non-pulsing unit, as in the type A, B and C networks, has been shown

to provide superior generalisation performance. Note also that, because only one item is input at a

time, the type 2 network effectively does not possess such links either; only one phase can be active

on the input units at any time and so the non-pulsing units have only the one active phase on their

input, making the summation a redundant operation. This explains the equally good performance of

the type 2 network in this specific context. This observation, supported by the theoretical argument

at the end of Section 4.1.1, is the basis for the following definition:

Simple Synchrony Networks are recurrent TSVB connectionist networks without links from

pulsing to non-pulsing units

Note that this definition only rules out the presence of weighted links whose source is a pulsing

unit and whose target is a non-pulsing unit. This does not mean no interaction occurs between the

two types of unit. Such interaction is a result of training, where the same output error is fed back

to both the pulsing and non-pulsing elements of the circuit. Because this error is the result of a

computation based on information in both the pulsing and non-pulsing parts of the network, the

backpropagated error will force the two separate elements to recognise and adapt to the computa-

tions performed by the other. This means that the weights within the separate parts of the network

are trained in relation to the weights in other parts. Hence, the computations performed at separate

pulsing and non-pulsing units will complement each other.

The generality of the Simple Synchrony Networks as a computational architecture depends on

how the input format interacts with the two paths through the network, before they are combined

to form the output. Essentially, enough information must be passed down both the pulsing and

non-pulsing paths so that their interaction provides the output with enough information to compute

relationships between the different entities in context with the rest of the sentence. In the case of

the type B and C networks, the non-pulsing element is effectively a Simple Recurrent Network

(SRN), and so, with an appropriate input representation, this element will compute with the same

generality as an SRN. For the types A, B and C, each entity input to the network enters a recurrent

pulsing element of the network. This ensures that information about each entity is retained over the

lifetime of the sequence. The non-pulsing information, in the case of the type A and C networks,

is combined with these entities in every time period, and so information is built up for each entity

94

in context with the rest of the sequence. For the type B network, the context of each entity is only

supplied at the combination layer, just before the output layer; however, this seems adequate in the

experiments performed here. In all the experiments in this thesis, the input is a sequence of words or

word-tags within a sentence. In each case, the separate words (or word-tags) are input both on the

pulsing inputs, as separate entities, and on the non-pulsing inputs, to provide a context. Hence, with

this representation, the architectures convey enough information about both entities and context to

the output units.

The Simple Synchrony Network (SSN) combines elements from a number of different areas.

In particular, the SSN combines the ability of SRNs to learn about patterns across time with the

ability of TSVB to represent multiple entities and generalisations across them. These abilities make

the SSN capable of handling a wide range of domains. Specifically, these abilities are suited to

problems such as natural language processing requiring the output of structured information. The

next chapter explores the ability of the SSN to learn to parse sentences drawn from a corpus of

naturally occurring text.

95

Chapter 5

Experiments in Learning to Parse

Natural Language

The Simple Synchrony Network (SSN) defined in the previous chapter is a new connectionist ar-

chitecture which combines the ability of Simple Recurrent Networks (SRNs) to learn about patterns

across time with the ability of Temporal Synchrony Variable Binding (TSVB) to represent multiple

entities and generalisations across them. The basic generalisation abilities of the SSN have been

tested on two toy grammars. These experiments have shown that the SSN can generalise infor-

mation to increasing numbers of entities (as in the pp-attachment problem) and across syntactic

constituents within a parse tree (as in the recursive grammar). In this chapter the SSN is applied

to a more complex problem using natural data: learning to parse sentences drawn from a corpus of

naturally occurring text. This application is an example of a real world problem requiring the out-

put of structured information. This chapter describes the natural language corpus and input/output

representation used for the experiments, and then presents results from experiments with the SSN

in learning to parse from this corpus.

5.1 Data for Parsing with the Simple Synchrony Network

This section describes the data and input/output format used in the experiments for training the

Simple Synchrony Network (SSN) to parse samples of natural language. The data set used is a

corpus of sentences taken from samples of real natural language, and the bulk of this section is taken

up with describing an input-output representation suitable for use by SSNs when applied to this task.

The intention is to emulate the format of experiments performed with the Probabilistic Context-

Free Grammar (PCFG) described in Section 3.3, but with a model of connectionist learning. As

shown in Section 3.4, previous attempts at connectionist language learning have not produced results

comparable to those of the statistical language learning community, instead relying on restricted

output representations or toy grammars. The experiments described here use the SSN to generate

parse tree representations from samples of naturally occurring text, and the parser is evaluated in

the same terms as statistical parsers.

Because these experiments are partly exploratory, designed to investigate the ability of the SSN

to learn to parse samples of naturally occurring text, a relatively small corpus has been used; the

SUSANNE corpus contains around 130,000 words compared with the several millions of the Penn

Treebank. For this reason, word-tags are used as the input to the network, instead of the actual

words. The use of word-tags means that, firstly, a smaller database is required for learning the same

grammatical information. This is because the occurrence of the word-tag “NP”, for example, will

be more frequent than the occurrence, individually, of the words “Mary”, “John” etc, which are

96

instances of that tag. Therefore, the information to be learned about the word-tag “NP” should be

more readily available to the network, and not need inferring from the individual nouns within the

database. Secondly, the actual number of input units in the network, and therefore the number of

links from these units to the rest of the network, is reduced. These two factors have the desirable

effect of reducing training times. Therefore, the input-output mapping for the network to learn will

be one from a sequence of word-tags to a target parse tree.

This section continues as follows. Firstly, the SUSANNE corpus is described, with particular

reference to the information relevant to syntactic parsing. Secondly, the appropriateness of the SU-

SANNE parsing scheme is discussed with relation to the specific properties of the SSN. As will

be seen, a small modification is required to the SUSANNE representation of parse trees to accom-

modate a limitation in the representations of output structure currently used by the SSN. Thirdly,

the GPS output representation is defined, which allows the network to define the constituents of

the parse tree. This representation retains the complexity of the language learning task, but takes

into account the restrictions imposed by the SSN’s representation by converting the corpus from

one parsing scheme (that of SUSANNE) to a different parsing scheme (similar to a dependency

grammar). The process of converting the SUSANNE corpus into this output representation is then

detailed. Finally, when the SSNs are tested, their outputs must be compared with the target parse

tree obtained from the corpus. This evaluation process, based on the same precision/recall measures

used for evaluating the PCFG, is also described.

This chapter continues with Section 5.2, which describes the experiments performed on this

database.

5.1.1 The SUSANNE corpus

The SUSANNE corpus (Release 4, November 1994) is used in these experiments as a source of pre-

parsed samples of natural language; the acronym SUSANNE stands for ‘Surface and Underlying

Structural Analyses of Naturalistic English’. The database is composed of texts taken from the

Brown Corpus, but is parsed using a classification scheme extended from one devised at Lancaster

University. The corpus is described in detail in Sampson [87] and the original work at Lancaster

University is covered in Garside et al. [28]. This section describes the format of the SUSANNE

corpus and the information in the corpus used in the experiments. Section 5.1.4 explains how the

corpus is converted into the format required in the specific experiments discussed in this thesis.

The SUSANNE corpus is the result of applying a scheme for representing all formally speci-

fied aspects of English grammar to a sample of the Brown Corpus. This scheme provides for an

information-rich description of any English sentence. The corpus is divided into four genres, each

genre containing sixteen texts. A sample of the corpus is shown in Table 5.1.

The data is arranged into six fields, shown by the six columns in the table. The first is the

reference of that line within the corpus, and is a unique code for that line. The initial letter, ‘A’ in

this example, indicates the genre of this piece of text, and is the same as those used in the original

Brown Corpus – ‘A’ refers to ‘press reportage’. The next two numbers, ‘01’ in the table, refer to

the text number of which this particular sentence is taken. The rest of this field forms the unique

identifier for this line within the corpus. The second field is the status of this line. It is not usually

used, and ‘-’ is the most common entry, although it can indicate an error in the text, or that the

word is an abbreviation or symbol. The third and fourth fields indicate respectively the word-tag

and word of the particular word or symbol appearing at that point of the sentence. The fifth field,

lemma, shows the word in canonical form, i.e. without grammatical inflections. For example, the

seventh line in the table shows the word ‘said’ and its canonical form ‘say’. Finally, the sixth field,

parse, gives information about the parse tree for the sentence.

The experiments with the SSN use a target input-output mapping based on mapping a sequence

97

reference status word-tag word lemma parse

A01:0010a - YB <minbrk> - [Oh.Oh]

A01:0010b - AT The the [O[S[Nns:s.

A01:0010c - NP1s Fulton Fulton [Nns.

A01:0010d - NNL1cb County county .Nns]

A01:0010e - JJ Grand grand .

A01:0010f - NN1c Jury jury .Nns:s]

A01:0010g - VVDv said say [Vd.Vd]

A01:0010h - NPD1 Friday Friday [Nns:t.Nns:t]

A01:0010i - AT1 an an [Fn:o[Ns:s.

A01:0010j - NN1n investigation investigation .

A01:0020a - IO of of [Po.

A01:0020b - NP1t Atlanta Atlanta [Ns[G[Nns.Nns]

A01:0020c - GG +<apos>s - .G]

A01:0020d - JJ recent recent .

A01:0020e - JJ primary primary .

A01:0020f - NN1n election election .Ns]Po]Ns:s]

A01:0020g - VVDv produced produce [Vd.Vd]

A01:0020h - YIL <ldquo> - .

A01:0020i - ATn +no no [Ns:o.

A01:0020j - NN1u evidence evidence .

A01:0020k - YIR +<rdquo> - .

A01:0020m - CST that that [Fn.

A01:0030a - DDy any any [Np:s.

A01:0030b - NN2 irregularities irregularity .Np:s]

A01:0030c - VVDv took take [Vd.Vd]

A01:0030d - NNL1c place place [Ns:o.Ns:o]Fn]Ns:o]Fn:o]S]

A01:0030e - YF +. - .O]

Table 5.1: A Sample from SUSANNE - A01

98

of word-tags to a parse tree. Therefore, the relevant fields from the SUSANNE corpus are the third

and the sixth, the word-tags and the parse, respectively. These two fields are now described in more

detail.

Word-tags

The word-tags used in the SUSANNE corpus are an extension of those used in the ‘Lancaster’

tagset [28]. The extended word-tags provide a rich source of information about the words within

the corpus.

The word-tags appearing in the corpus begin with two or three capital letters, which define the

original word-tag from the Lancaster tagset. The lower case letters are the refinements added with

the SUSANNE scheme. For instance, “revealing” is tagged “VVG” (present participle of verb)

in the Lancaster scheme, but as “VVGt” (present participle of transitive verb) in the SUSANNE

scheme. There are 353 distinct word-tags used in the SUSANNE scheme, which have a hierarchical

arrangement, e.g. word-tags for nouns begin with ‘N’ and those for verbs with ‘V’.

Because the additional grammatical distinctions used by the SUSANNE scheme would partially

lead to a recurrence of some of the sparse data problems inevitable with the use of words, the exper-

iments reported here restrict themselves to the first part of the word-tag, i.e. the two or three capital

letters which define the original word-tag from the Lancaster tagset. This avoids the problems with

sparse data, when a particular word-tag does not occur frequently enough within a dataset for useful

information about it to be learned. It also leads to a more parsimonious set of input data, as the SU-

SANNE extensions are present only in restricted settings to cover specific semantic uses of words.

Thus, the word-tags used in the experiments are those of two or three letters from the Lancaster

tagset.

Parse information

The sixth field of the corpus provides the information for the grammatical structure of the texts as a

sequence of labelled parse trees. Each line in the corpus represents a separate leaf node in the tree.

The canonical form for the text is a sequence of “paragraphs” separated by “headings”. The

symbol “<minbrk>” is used as the standard separation between paragraphs, and may be seen in

the word field of the first line of the example sentence in Table 5.1. Each heading or paragraph,

conceptually, is a labelled tree with a root node labelled “O” (“Oh” for a heading), and with a leaf

node labelled with a word-tag for each SUSANNE word or trace.

This tree is represented in the standard way as a bracketed string, with the labels of nonterminals

written ‘inside’ both the opening and closing brackets. This bracketed string is then adapted in the

following manner for inclusion in successive SUSANNE parse fields. If an opening bracket imme-

diately follows a closing bracket, the string is segmented at that point, so that one segment appears

on each leaf node – e.g. between the reference lines A01:0010f and A01:0010g in Table 5.1,

where the segment representing the subject noun phrase ends, and the verb occurs. Secondly, wher-

ever the word-tag appears within the segment, that tag is represented by a full-stop. Therefore, each

line of the parse tree contains one full-stop, which corresponds to a terminal node labelled with the

contents of the word-tag field.

There are three types of information contained in the nonterminal node labels of the SUSANNE

scheme: a Formtag, a Functiontag and an Index, in that order. The Formtag is separated from

the other two types by a colon. The Functiontag is always a single alphabetic character, and the

Index is a three digit number; these two items are used to represent semantic relationships between

different clauses. The labels on the constituents in the later experiments use some of the information

contained in this field. Specifically, the first letter of the Formtag is used, as it gives the primary

99

Clause tags Phrase tags

Main clause (S) noun phrase (N)

adverbial/nominative clause (F) verb phrase (V)

particle/infinitive clause (T) adjective phrase (J)

reduced clause (Z) adverb phrase (R)

miscellaneous verbless clause (L) prepositional phrase (P)

special ‘as’ clause (A) determiner phrase (D)

‘with’ clause (W) numeral phrase (M)

genitive phrase (G)

Table 5.2: Parts of speech used in the SUSANNE corpus for labelling constituents

classification of that bracket; the tags used are shown in Table 5.2 – note that they are an enlarged

set of the standard categories in Government and Binding theory, which were give in Table 3.3.

5.1.2 Appropriate parse trees for learning

Johnson [48] has warned that the representation used for a parse tree within a corpus need not be

the one most suited for learning by a parser. In support of this, he shows that a simple relabelling

of the nodes within a parse tree can amount to an 8% change in performance, halving the different

between a simple PCFG parser and the best broad-coverage parsers available. These results suggest

that some flexibility should be used in determining the form of target parse tree for training a parser.

But more importantly, the form of the parser may instead constrain the form of parse tree which it

can be trained on. Such a constraint was met with the holistic parsers, in which the requirement of

a sequential encoding of the parse trees meant that each tree had to be of fixed valency. This section

discusses the impact a limitation in the current input/output format of the SSN has on the form of

target parse tree.

This limitation of the SSN is the number of nodes which may be used in the output parse tree.

As discussed in Section 4.1.5, each node within the output parse tree is represented as a separate

phase within the SSN, and each phase is introduced at the time of input of each word. Thus, the

number of nodes within the parse tree is directly proportional to the number of input words; in this

thesis, it is assumed that only one new phase may be introduced per word, so the output parse tree

can only possess as many nodes as there are input words. This limitation applies not only to the

complete sentence, but to every constituent within it: the number of nodes required in the parse tree

representing each constituent may not exceed the number of words forming that constituent. This

has the effect, within a hierarchy, of forcing each constituent to have more words than the total of

the words in all its subconstituents; this is because each constituent must have at least one direct

word child.

Assuming that an adequate number of nodes have been introduced, the SSN is perfectly capable

of representing the (acyclic) sets of relations between them typical of parse trees. As discussed in

Section 4.1.5, the SSN’s pulsing outputs can be used to output a relationship between the current

word and the new node just introduced, or between the current word and any of the nodes introduced

by previous words. This enables the SSN’s output to represent arbitrary forms of hierarchy within

a parse tree. Hence, the SSN is capable of outputting any form of parse tree, restricted only by the

limitation on the number of nodes. The remaining question, with respect to the SUSANNE parsing

scheme, is the severity of this limitation.

It is not difficult to find examples which violate this limitation, a common one being the S–

100

VP division. For example, in the sentence ‘Mary loves John’, a typical encoding would be: [S

[NP [N Mary]] [VP [V loves] [NP [N John]]]]. The linguistic head of the S (the verb “loves”)

is within the VP, and so the S does not have any word-tags as immediate children. The solution

adopted here is to collapse the S and VP into a single constituent, producing: [S [NP [N Mary]]

[V loves] [NP [N John]]]. The same is done for other such constructions, which include adjective,

noun, determiner and prepositional phrases. Although this procedure is a simplification, it has the

linguistic precedent of bringing the resulting representation closer to that of a dependency grammar,

as described in Melčuk [67].

The actual severity of this limitation may be quantified in terms of the training data used below.

In Section 5.2 a training set is selected from the SUSANNE corpus, and it is possible to count

the type and frequency of each change made to the SUSANNE corpus with respect to the SSN’s

limitation in the number of output nodes. The most common changes are caused by the verb phrases:

the S–VP change, which occurs once per sentence, appears 265 times, and the similar change within

relative clauses appears 28 times. Apart from these two, the changes are minor. For instance, the

next most common problem is the use of an extra quote tag around a sentence, e.g. [S [Q [NP Mary]

...]]. This occurs 13 times, and is a redundant encoding, and hence safely ignored. Finally, there are

a series of less frequent changes, reflecting various linguistic constructions. 12 of these occur in the

entire training set. As this set contains over 1,580 constituents, it can be seen that, practically, the

limitation of the SSN is not too severe. In addition, it would be possible to artificially reintroduce

most of the verb phrases on output, leaving only around 30 irrecoverable changes.

What is at issue in this thesis is not, however, the precise nature of the parse tree representation

produced by the SSN parser. Instead it is the ability of the SSN parser to learn to generate parse

trees from a corpus of naturally occurring text. As shown in earlier chapters, other architectures,

such as the RAAM, can be used to generate parse trees (albeit with some restrictions). However, the

task of scaling up a parser based on RAAMs from certain toy grammars has yet to be demonstrated.

More important than the precise form of representation output by the parser, which is largely an

artifact of linguistic coding schemes, is the ability to learn appropriate generalisations for natural

language. And this is what will be tested later in this chapter. For now, a representation for a slightly

simplified form of the SUSANNE parse trees is introduced in the next few subsections. Chapter 6

contains some suggestions for altering the SSN’s output representation to better support the parse

trees within the SUSANNE corpus.

5.1.3 The GPS output representation

This section introduces a specific input-output representation which uses a sequence of word-tags as

an input and a sequence of parent-child relationships to describe an output parse tree. The sequence

of parent-child relationships enables the SSN to incrementally output information about the parse

tree in response to each input word-tag. Once every word-tag in the sentence has been processed,

the total sequence of outputs will describe the entire parse tree.

In order to build up a parse tree incrementally from the separate word-tags in a sentence, the

network should output the set of parent-child relationships which define each word-tag’s position in

the parse tree. Figure 5.1 illustrates the sentence ‘Mary saw the game was bad’, which is represented

as a sequence of word-tags as ‘NP VVD AT NN VBD JJ’. The sentence structure (S) contains

separate constituents for the subject noun (N) and object clause (F), which contains a further noun

phrase (N); the parent-child relationships between the nodes for each of these constituents is shown

by solid lines. The parent node of each word-tag in the sentence is the unique node which that

word-tag is directly connected to. For each node in the parse tree, its children are those nodes which

connect to it. For example, the children of the ‘S’ node in Figure 5.1 are the ‘N’ node, the word-tag

‘VVD’, and the ‘F’ node. When parsing, the network is presented with a word-tag on its input, and

101

Mary saw the game was bad

NP VVD AT NN VBD JJ

N N

F

S

Parent Sibling Grandparent

Figure 5.1: A sample parse tree. The solid lines indicate the parse tree itself, the dotted and dashed

lines the relationships between the words and nodes.

the desired output is a representation for the parent-child relationships relevant to that word-tag.

In the experiments with the SSN, each word-tag is introduced to the network on a new, previously

unused phase, and so introduces a new entity to the network. These entities are used in the output

format to represent the individual nodes of the parse tree.

The parent-child relationships are output by the parser as described in Section 4.1.5 of the previ-

ous chapter. The parser is provided with three kinds of relationship: ‘parent’, ‘sibling’ and ‘grand-

parent’. These relationships are indicated by setting the appropriate output unit in the phase of the

node to which they refer. The ‘parent’ output is used to indicate the parent node of the current input

word-tag. For each word-tag, there are two cases to consider. Firstly, its parent is an existing node

in the tree. For example, the word-tags “NN” and “JJ” in Figure 5.1. Secondly, the parent is a new

node and is therefore introduced by the current word-tag. In which case, the parent of the word-tag

is the node introduced by the current word-tag. For example, the word-tags “NP”, “VVD”, “AT”

and “VBD” in Figure 5.1. When a new node has been introduced into the parse tree, its relationship

to other nodes must also be indicated. There are again two cases. The first occurs when, as with the

first word-tag in the sentence, the parent of the new node (‘N’) is a node not yet introduced, the ‘S’

in this case. This relationship can only be given when the word-tag which introduces the ‘S’ node

appears on the input. Once this word-tag, “VVD”, is input, then its relationship to the ‘N’ node will

be output. This relationship is a ‘sibling’ relationship, and is shown as a dashed line in the figure.

The second case occurs when the parent of the new node already exists in the sentence. The rela-

tionship of the current word-tag to that existing node is a ‘grandparent’ relationship, and is indicated

at the same time as the new node is introduced. An example of a grandparent relationship is the

dotted-and-dashed line in Figure 5.1 between the “VBD” word-tag and the ‘S’ node; the word-tag

“VBD” has introduced a new ‘F’ node, and the parent of this node is the earlier ‘S’ node.

The dotted and dashed links in Figure 5.1 from the word-tags to nodes in the parse tree indicate

which relationships are output by the network when that word-tag is input. These relationships are

identified by making the relevant output unit active in the time period in which the word-tag is input.

The relevant output unit is active in phase with the node to which the current word-tag is related.

For example, the sibling relationship between the word-tag “VVD” and the ‘N’ node is indicated

in the time period when “VVD” is input by making the S (sibling) output active in phase with the

‘N’ node. Table 5.3 lists the ‘parent’ (P), ‘sibling’ (S) and ‘grandparent’ (G) relationships relevant

to each word-tag in the sentence from Figure 5.1; the table shows the time period and phase for the

102

Time Pulsing Inputs Non-pulsing Outputs

Period Phase Inputs Phase

1 2 3 4 5 6 1 2 3 4 5 6

1 NP NP P

2 VVD VVD S P

3 AT AT P

4 NN NN P

5 VBD VBD G S P

6 JJ JJ P

Table 5.3: GPS outputs for the sample structure shown in Figure 5.1.

input of each word-tag, and similarly the relationships output for that word-tag.

These three outputs, the GPS representation, form the target output for the experiments in pars-

ing natural language. The representation can be extended by adding output units for the node labels;

the label for the node is indicated in the time and phase that the node is created. This representation

is important as it provides a representation of arbitrary parse trees, not just for SSNs, but for any

TSVB network, and provides a model for recursive structured representations when applying SSNs

to other domains.

5.1.4 Conversion of the SUSANNE corpus

This section deals with the process by which the SUSANNE corpus is converted into the word-

tag–GPS representation used in the experiments. The process may be summarised in the following

steps:

� extract the word-tag and parse tree information (fields 3 and 6) from the raw corpus,

� remove certain categories of ‘word’ and parse-tree information,

� collapse some nodes of the parse tree, so that the one constituent per word-tag requirement is

met,

� identify all constituents in the parse tree and their head words, i.e. work out the Parent rela-

tionships,

� identify each node’s right children where known, i.e. the Grandparent relationships,

� identify each node’s left children where known, i.e. the Sibling relationships,

� finally, convert into a binary representation.

For convenience, these steps are divided into a three-stage procedure, and described separately

in detail. In summary, the first stage takes the raw SUSANNE data and outputs a sequence of the 3

letter (Lancaster set) word-tags with an indication of their immediate parent and grandparent nodes

where possible. This stage is automated, and is achieved in a single forward pass of the data. This

stage leaves out the sibling relationships, as these require consideration of earlier parts of a sentence.

Instead, the program identifies these problem areas with a ‘?’ sign in the sibling (S) output.

The second stage replaces each ‘?’ sign with the appropriate phase of the left-child, identifying

which previous constituent in the sentence the word attaches to. This step also requires a change

103

Word-tag G P S Phase Parsed nodes

<> . 0 . 0 S0

AT 0 1 . 1 S0 N1

NP 1 2 . 2 S0 N1 N2

NNL . 2 . 3 S0 N1 N2

JJ . 1 . 4 S0 N1

NN . 1 . 5 S0 N1

VVD . 0 . 6 S0

NPD 0 7 . 7 S0 N7

AT 8 8 ? 8 S0 F8 N8

NN . 8 . 9 S0 F8 N8

IO 8 10 . 10 S0 F8 N8 P10

NP 11 11 ? 11 S0 F8 N8 P10 N11 G11 N11

GG . 11 . 12 S0 F8 N8 P10 N11 G11

JJ . 11 . 13 S0 F8 N8 P10 N11

JJ . 11 . 14 S0 F8 N8 P10 N11

NN . 11 . 15 S0 F8 N8 P10 N11

VVD . 8 . 16 S0 F8

YIL . 8 . 17 S0 F8

AT 8 18 . 18 S0 F8 N18

NN . 18 . 19 S0 F8 N18

YIR . 18 . 20 S0 F8 N18

CST 18 21 . 21 S0 F8 N18 F21

DD 21 22 . 22 S0 F8 N18 F21 N22

NN . 22 . 23 S0 F8 N18 F21 N22

VVD . 21 . 24 S0 F8 N18 F21

NNL 21 25 . 25 S0 F8 N18 F21 N25

.

Table 5.4: First stage in conversion process.

of phase number of some of the intermediate nodes, and, in some cases, a merging of nodes. This

process was performed manually to ensure that all relevant cases were handled correctly.

The third and final stage is again performed automatically by a program, and converts the word-

tags, constituent labels and numbers for the various output relationships into the binary format

required for training the SSN.

Stage one – extracting initial information

The SUSANNE database incorporates a wealth of detail which is not required for experiments in

learning to output syntactic parse trees. Table 5.4 shows the result of the first stage in the conversion

of the SUSANNE sample sentence from Table 5.1 into the desired format. This stage is performed

by the computer, and explained in this section.

The first column gives the word-tag for each line in the sentence. The word-tag information

is the Lancaster-set part of the SUSANNE word-tag, i.e. the first two or three capital letters of

the SUSANNE word-tag. Note that not every line in the SUSANNE database is converted. Some

lines refer to information about headings, and these are deleted. Also, the SUSANNE scheme can

104

Word-tag G P S Phase Parsed nodes

<> . . . 0 # remove attachment to <>

AT . 1 . 1 S6 N1

NP 1 2 . 2 S6 N1 N2

NNL . 2 . 3 S6 N1 N2

JJ . 1 . 4 S6 N1

NN . 1 . 5 S6 N1

VVD . 6 1 6 S6 # make VVD head of S0

NPD 6 7 . 7 S6 N7

AT . 8 . 8 S6 F16 N8 # introduce F8 on 16

NN . 8 . 9 S6 F16 N8

IO 8 10 . 10 S6 F16 N8 P10

NP . 11 . 11 S6 F16 N8 P10 N13 G12 N11

introduce first N11 on 13, G11 on 12

GG . 12 11 12 S6 F16 N8 P10 N13 G12

JJ 10 13 12 13 S6 F16 N8 P10 N13

JJ . 13 . 14 S6 F16 N8 P10 N13

NN . 13 . 15 S6 F16 N8 P10 N13

VVD 6 16 8 16 S6 F16

YIL . 16 . 17 S6 F16

AT 16 18 . 18 S6 F16 N18

NN . 18 . 19 S6 F16 N18

YIR . 18 . 20 S6 F16 N18

CST 18 21 . 21 S6 F16 N18 F21

DD 21 22 . 22 S6 F16 N18 F21 N22

NN . 22 . 23 S6 F16 N18 F21 N22

VVD . 21 . 24 S6 F16 N18 F21

NNL 21 25 . 25 S6 F16 N18 F21 N25

.

Table 5.5: Second stage in conversion process.

105

produce a ghost marker in certain instances. This marker is used to convey semantic information

in the parse tree about long-distance dependencies, and so is also ignored. Punctuation is retained

within the sentence, although the various end-of-sentence markers (exclamation or question marks,

ellipsis, etc) are all converted into full-stops (‘.’). The start of the sentence is indicated with a <>

symbol. The deletions made do not affect the constituent boundaries, and so leave the syntactic

parse information unchanged.

The next three columns give the grandparent, parent and sibling relationships for each word-

tag. The numbers in each column refer to the phase of the node to which the word-tag is related.

The column ‘Phase’ gives the phase number for any node introduced by that word-tag. The GPS

outputs are defined as described above, and indicate the structure of the evolving parse tree in terms

of the relationships between the current word-tag and the rest of the parse tree. For example, the

start symbol ‘<>’ introduces the ‘S0’ node in phase 0, hence the P output is active in phase 0, and

no activity appears on the G and S outputs. The conversion program recognises from the parse tree

information held in the SUSANNE database when nodes are introduced. If a new node is introduced

with the current word-tag, then the P output must be active in phase with the current word-tag. The

G output is active if a new node is introduced, and its parent is a previous word-tag. For example, the

second word-tag ‘NP’, introduces the new node ‘N2’ and is attached to the node ‘N1’ from phase

1, hence activity appears on the P output in phase 2 and the G output in phase 1. The conversion

program considers each line of the SUSANNE corpus in succession, and thus cannot handle sibling

relationships. Where such a relationship is indicated, i.e. the grandparent of a new node cannot be

identified, the program marks the S output with a ‘?’ sign, and continues. Such a case can be seen

in phase 8: both a new noun-phrase and a new relative clause begin at this point. The head word for

the latter will be its verb, which has yet to appear, and this verb will be the parent of the noun-phrase

begun in phase 8. The problem is identified because two new nodes have been introduced, each with

the new phase number.

The final column gives the parse tree information. This information is a list of the nodes relating

to each word-tag in the sentence. The nodes are described with a letter and a number: the letter is

taken from the SUSANNE database, and is the first letter in the Formtag, the number is that of

the phase in which that node was introduced. The right-most node indicates which constituent is

the word-tag’s immediate parent, and this node’s letter defines the constituent label output for this

word-tag. For example, the first word-tag, ‘AT’ has as its parent a node labelled ‘N1’, indicating

that it is a noun-phrase, and was introduced in phase 1 (along with the ‘AT’ word-tag). This ‘N1’

has the ‘S’ node, the root node for the sentence, as its parent, and this was introduced in phase 0,

with the start symbol.

Some of the parse tree constituent markers have been removed. These are principally the meta-

sentence markers, such as ‘[O.O]’, which are irrelevant to a sentence level parser. Also, nodes

indicating verb phrases have been combined with nodes indicating sentence or relative clauses.

This change is the first motivated by the need to collapse some of the nodes within the tree in order

to obtain a parse tree which only contains ‘one node per word-tag’.

To summarise: this stage has performed much of the hard work in extracting the information

from the SUSANNE database and putting it into the word-tag–GPS representation to be used in the

experiments. Remaining are the sibling relationships, which are added in the second stage.

Stage two – adding the sibling information

The second stage in the conversion procedure completes the process of the previous stage, by con-

sidering each of the ‘?’ marks in the S output. Consider the first ‘?’ mark in Table 5.4. This occurs

with the word-tag ‘AT’ in phase 8 and, according to the SUSANNE database, two new constituents

begin at this point. The first is the noun-phrase of which the ‘AT’ forms a part, and the second is the

106

relative clause which this noun-phrase begins. Because both the noun-phrase and relative clause are

introduced at this point, the first stage has placed ‘S0 F8 N8’ in the parsed nodes column. However,

when constructing the GPS outputs, the first stage has run into a problem: looking at the top-most

node, ‘N8’, it determines that the current word-tag’s Parent is the ‘N8’ node, and so the P output

is made active in phase 8. Because this is the same as the current node, the word-tag has therefore

introduced a new node, which means the parent of this new node must also be given. This node

is the node ‘F8’. Unfortunately, because this is also a new node, introduced in phase 8, it is not

suitable as a grandparent of the current word-tag. The first stage has therefore given phase 8 for the

G output, and marked the S output with a ‘?’ mark.

The question to be resolved here is, what to do about the ‘F8’ node? The solution adopted here

is to make the phase for the ‘F’ node the phase in which its head word is introduced, because ‘F8’

is the node describing the relative clause constituent. The head word for a relative clause is its main

verb, which only appears as the 16th word-tag, ‘VVD’. (Visually, it is evident that the node ‘F8’

is the immediate parent only for this word-tag; this is only so because the verb-phrase descriptors

were removed in the first conversion stage.)

Therefore, in this second stage, the entire ‘F8’ node is replaced by an ‘F16’ node, i.e. it is

introduced by the word-tag ‘VVD’. The noun-phrase introduced by the word-tag ‘AT’ in phase 8

therefore has ‘F16’ as its parent, which is indicated as a sibling relationship between the word-tag

‘VVD’ and the noun-phrase introduced by the word-tag ‘AT’ in phase 8. This change is carried

out in Table 5.5, where the comment ‘# introduce F8 on 16’ refers to the changes made to the GPS

outputs in Table 5.4.

Further, because the root node for the sentence is the main verb, a similar change is made to the

‘S0’ node: the main verb in phase 6 introduces the node ‘S’. This makes for a similarity in structure

between the sentence and relative clauses.

There are several other places where such changes arise. The most frequent of these are: deeply

embedded noun, prepositional, determiner and genitive phrases.

Before this stage can be made an automatic one, implemented in a computer program, all these

possible changes must be identified and the appropriate responses determined. However, the basic

technique for making the changes is a fairly straightforward one. Therefore, for the purposes of

this thesis, it was found most appropriate to rely on a scanning by eye of the whole database,

manually replacing the ‘?’ marks and clause heads as detailed above. This process also uncovered

other features of the SUSANNE scheme which detracted from the homogeneity of a sentence based

parser, for example, the presence of long lists (100 words or more), which could be (and were)

converted into short sentences.

Finally, from this second stage, the data can be presented to the networks, after converting the

word-tags and GPS relationships into a sequence of binary numbers.

Stage three – converting into binary

The third stage is a simple procedure, converting the ‘human-readable’ representation generated

by the first two stages into a set of binary values. The word-tags are dealt with as three separate

inputs, one input per character in the tag. The three characters are then input to the network as three

separate 1-in-n basis vectors.

For the outputs, values must be given for each output unit in every phase of that word-tag’s time

period. Thus, as each word-tag introduces an additional phase to the network, the amount of target

output required for each input word-tag grows quadratically. For the GPS output units, the phase

numbers given at the end of stage two indicate which phase of the current time period that output

unit is active in. For all other phases in the current time period that output unit will be inactive, i.e.

have a target activation of 0.

107

Figure 5.2: The target parse tree for the example sentence from the SUSANNE corpus used in

training the SSN parser.

The output label is also indicated as a 1-in-n vector, with 15 possible output labels, as shown

in Table 5.2. The label information is only relevant to the currently introduced phase, and so the

activation for the label output units are given once, indicating the target outputs for the label in the

currently introduced phase.

Figure 5.2 illustrates the parse tree formed from the example sentence.

It remains to be considered how the GPS relationships output by a SSN, which define an output

parse tree for the sentence, will be compared to a target parse tree.

5.1.5 Evaluation of the parser’s output

The performance of the SSN with respect to its training data is computed on each pass of the

backpropagation training algorithm as the difference between the computed activation and the target

activation on each of the output units. However, this performance is only useful for training the

weights within the network. For evaluating the output structure or comparing the performance

of the SSN with other parsing techniques, such as the PCFG, a performance measure specific to

the output parse tree is required. In Section 3.3, the precision and recall performance of a parser

with respect to its target corpus were defined; these are the standard quantities used for comparing

target and output parse trees in statistical parsing. These quantities are defined by comparing the

constituents output by the parser with the constituents in the corpus.

In order to interpret the SSN’s output as a parse tree, the first step is to convert the sequence

of real-valued numbers on the GPS output units computed in response to each word-tag into a set

of well-defined GPS relationships. The second step is to turn these GPS relationships into a set

of constituents for the current sentence. Constituents are formed from the GPS outputs merely by

thresholding the activation on each output unit and using this information, as described for con-

structing the target parse, to specify the presence of new nodes and the relationships between the

nodes in the parse tree.

This process can be illustrated by considering an example sentence. Table 5.6 gives the input,

target and actual output generated by a Type B network on an example sentence; the phases listed

under ‘Actual output’ are those in which the designated output unit had an activation exceeding 0.6.

This value is used as a threshold simply to ascertain which units are producing a significant amount

of output; these units will then be compared to determine the relationships output by the network.

It is necessary to threshold before making a comparison because units may output small activation

values, and it is not desirable for such a unit to be selected as providing an informative output. From

108

Target Output Actual Output

Time Period Wordtag G P S Label G P S Label

0 <Start>

1 PPI 1 N 1 N

2 VBM 2 1 S 0,2 1 S

3 JJ 2 3 J 2,3 N

4 TO 3 4 T 2,4 T

5 VV 4 T 2,4 T

6 APP 4 6 N 4 6 N

7 JJ 6 N 6 N

8 NN 6 N 6 N

9 II 4 9 P 9 P

10 PPH 9 P 9,10 N

11 YIR 2 V F

Table 5.6: GPS target and actual outputs for a sample sentence

these thresholded output activations, information must be extracted about the nodes introduced by

each word-tag and the relation of each new node to the rest of the tree. This is extracted in the

following manner.

For each word-tag, its parent non-terminal node is identified by the parent output unit active in

its time period; as activity may appear in several phases, the one with the greatest activity is chosen,

or else the most recent one. The parent of that non-terminal node is then identified as the winner

of the following competition: first, the phase in which the grandparent output has the maximum

activation in the current time period is identified; then the time period in which the sibling output

has the maximum activation in the current new phase is identified; then, of these two numbers, the

one with the highest activation or else the most recent is selected.

Applying this procedure to the outputs given in Table 5.6 creates the set of relationships shown

in Table 5.7. These relationships are then converted into a set of constituents. This is achieved

in the following manner. First, the active nodes are identified, i.e. those in which the word-tag’s

parent is its own phase, so indicating that a new node has been introduced to the parse tree. These

active nodes are the heads of constituents, and the constituent is initialised with the word-tag which

introduced it. Second, the word-tags whose parent is one of the active nodes are added to their parent

constituents. Third, the grandparent relations are considered to determine which other constituents

each constituent is a member of; when a constituent is a member of another constituent, then every

word-tag in that constituent is a member of the other. This process leads to the sets of constituents

illustrated in Table 5.8.

Evaluation proceeds by counting the number of constituents output by the parser, the number of

constituents in the target parse and the number of constituents which are identical in the target and

output sets. In this example, 6 constituents are in the output and target sets, and 3 are identical in

both. Thus the precision, the percentage of the output constituents which are correct, and recall, the

percentage of the correct constituents which are output, for this sentence are both 50%.

There are also more sophisticated approaches to extracting and comparing the constituents. For

example, punctuation is treated like extra word-tags, but it is unrealistic to penalise a parse if a

comma is located in one constituent instead of an adjacent one. One approach ignores the commas

when computing precision/recall figures. Also, one word-tag constituents may also arise. This

extra information may, in many cases, be irrelevant. e.g. [[CC] VV ...] and [CC VV

109

Target Output Actual Output

Time Period Wordtag Parent Grandparent Label Parent Grandparent Label

0 <Start>

1 PPI 1 2 N 1 2 N

2 VBM 2 S 2 S

3 JJ 3 2 J 3 N

4 TO 4 3 T 4 T

5 VV 4 T 4 T

6 APP 6 4 N 6 4 N

7 JJ 6 N 6 N

8 NN 6 N 6 N

9 II 9 4 P 9 P

10 PPH 9 P 9 N

11 YIR 2 V F

Table 5.7: Parent-child relationships for the non-terminal nodes in a sample sentence

...]. No such techniques are used in the experiments reported in this thesis, which therefore uses

a ‘worst case’ computation of the precision/recall figures.

5.2 Experimental Results

This section describes results from a series of experiments performed with Simple Synchrony Net-

works (SSNs). The SSNs are trained to parse samples of real natural language taken from the corpus

described in the previous section. The experiments are performed using the STM-SSN model, i.e.

the SSNs used in the previous chapter have been augmented with the Short-Term Memory queue.

This has the effect of dramatically reducing training times, by reducing the number of phases the

network must compute over. Various sizes of STM queue are tested, to determine its effect on learn-

ing. Throughout, results are quoted both in terms of the precise number of relationships correctly

output by the parser, and in terms of the standard precision/recall measures for evaluating the degree

of fit between an output parse tree and its target.

5.2.1 Experiments with the STM-SSN network

The experiments all use the same set of data for selection of training, cross-validation and test sets,

taken from one of the SUSANNE genres. Genre A for press reportage was selected and sentences

allocated into the three data sets in the ratio 4:1:1. Sentences of less than 15 word-tags were selected

from the training set, forming a set of 265 sentences containing 2834 word-tags, an average sentence

length of 10.7. Similarly, a cross-validation set was selected, containing 38 sentences of 418 word-

tags, average sentence length of 11.0, and a test set with 34 sentences, containing 346 words, with

an average sentence length of 10.2.

The three SSN types A, B and C were all tested. Twelve networks were trained from each type,

consisting of four sizes of network (between 20 and 100 units in each layer), each size was tested

with three different STM lengths (3, 6 and 10). Each network was trained on the training set for 100

epochs, using a constant learning rate � of 0.05. The Appendix contains results from testing each

network on the cross validation set at intervals of 20 epochs throughout training.

110

Target constituents

Word 0 1 2 3 4 5 6 7 8 9 10 11 Label

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 N

2 0 1 1 1 1 1 1 1 1 1 1 1 S

3 0 0 0 1 1 1 1 1 1 1 1 0 J

4 0 0 0 0 1 1 1 1 1 1 1 0 T

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 1 1 0 0 0 N

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 1 1 0 P

10 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

Output constituents

Word 0 1 2 3 4 5 6 7 8 9 10 11 Label

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 N

2 0 1 1 0 0 0 0 0 0 0 0 0 S

3 0 0 0 1 0 0 0 0 0 0 0 0 N

4 0 0 0 0 1 1 1 1 1 0 0 0 T

5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 1 1 0 0 0 N

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 1 1 0 P

10 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

Correct constituents: 3

Number in target : 6 (Recall: 50.0%)

Number in output : 6 (Precision: 50.0%)

Table 5.8: Target and output constituents for a sample sentence; a 1 in column x of row y indicates

that word-tag x is a member of the constituent introduced by word-tag y.

111

Test Sentences Precision Recall G P S Label

Type A : STM of 10, 100 units

Train 1/265 (0%) 34.7 31.3 35.6 65.9 20.8 89.3

Cross 0/38 (0%) 31.8 29.7 30.5 65.2 18.7 84.7

Type B : STM of 3, 80 units in each layer

Train 63/265 (24%) 69.9 68.7 74.1 94.3 73.0 97.5

Cross 10/38 (26%) 71.5 71.2 74.8 95.6 70.7 96.4

Test 9/34 (25%) 71.2 70.8 82.0 94.6 64.6 98.3

Type B : STM of 6, 80 units in each layer

Train 62/265 (24%) 66.0 64.4 75.2 92.3 84.6 97.5

Cross 12/38 (32%) 65.3 64.2 82.4 92.6 85.3 96.2

Test 8/34 (25%) 67.4 65.2 83.0 93.3 83.1 98.3

Type C : STM of 3, 80 units in each layer

Train 64/265 (24%) 72.6 71.7 70.8 95.7 72.1 98.4

Cross 9/38 (24%) 74.4 73.8 71.8 97.3 70.7 97.8

Test 13/34 (38%) 80.3 80.3 85.0 96.0 66.1 99.1

Type C : STM of 6, 80 units in each layer

Train 56/265 (15%) 65.5 63.7 68.1 92.8 82.3 97.1

Cross 8/38 (21%) 63.6 61.1 68.7 91.5 81.3 95.5

Test 10/34 (29%) 71.4 70.2 76.0 93.9 84.7 98.3

Table 5.9: Comparison of network types in learning to parse

The best example of each network type was chosen for comparison. Table 5.9 gives figures for

five networks. For each network, the performance on the three datasets (training, cross-validation

and test) are given under three categories: the number of correct sentences, a measure of the number

of correct constituents (precision and recall) and the percentage of correct responses on each output

unit.

Considering the figures in the table, the type A networks are not particularly successful. Results

for the best performing type A network are given. The type B and C networks were much more

successful. For each type, the results from two networks are given: the first having the best preci-

sion/recall measure, and the second having better results on the individual outputs (i.e. G, P, S and

label). Both the type B and C networks produce similar ranges of performance: around 25% of sen-

tences are correct and between 70-80% is scored in average precision/recall by the better networks.

In particular, the percentage correct for the constituent labels and the P output exceed 90%. Also

notable is that the percentage results of the networks are similar across the three datasets, indicat-

ing that the network has learnt a robust mapping from input sentences to output parse trees. This

level of generalisation (around 80% average precision/recall) is similar to that achieved by PCFG

parsers [48], although for a fair comparison identical experiments must be performed with each

algorithm: this point is returned to in the conclusion.

5.2.2 Analysis of results

The basic experimental results above have provided both detailed values of the performance of

the network with specific output relationships as well as their combined performance in terms of

the constituent-level measures of precision and recall. Here, these results are broken down and

compared to see the progress of learning of the networks over time, a comparison of the effect of

112

the STM queue and a table of the actual dependencies present in the data itself.

Effects of STM length

The effects of STM length can be seen by plotting the performance of one type of network with

varying sizes of STM. This is done in Figure 5.3, in which the performance of a type C network with

80 units in every hidden layer is shown for the three sizes of STM, i.e. 3 (from Table A.7), 6 (from

Table A.8) and 10 (from Table A.9). The separate graphs show the constituent-level performance of

the network, in terms of average precision/recall, and the performance of the separate output units,

grandparent, parent, sibling and constituent label (this latter, though a group of units, is treated as

a single output). The graphs demonstrate that, at the constituent-level, the shorter STM lengths

perform better. However, the longer STM lengths can achieve greater accuracy, in particular with

respect to the sibling output. This is to be expected, as the longer lengths have more information

and also a greater likelihood of containing the phase referred to by the specific output.

Dependency lengths in data set

One of the concerns of connectionist language learning has been the length of dependency which the

SRN can learn [21]. It is of interest to provide an analysis of the data set used in these experiments

to see what lengths of dependency occur, particularly with regard to the impact the finite length of

STM might have on the network’s ability to learn.

Table 5.10 contains an analysis of the lengths of each dependency contained in a sample of the

training corpus of sentences of length less than 30 words. This corpus contains 13,472 word-tags in

716 sentences, with an average length of 18.83. The length of a dependency is the number of words

between the current word and that indicated by each output. The table lists separately the lengths

for each of the output units, with the final two columns providing a total number and percentage for

that dependency length across the whole corpus. The surprising result of this analysis is that most of

the dependencies (almost 70%) relate to the current word or its predecessor. There is a sharp tailing

off of frequency as longer dependencies are considered.

Of course, with the STM queue, the network can only process a limited number of words at

any one time, and so the length of dependency which the network can handle is altered. However,

because the STM holds phases for the relevant constituents, the length of any dependency is not

restricted to the length of the STM queue. With a STM, the length of dependency will be the

number of places down the queue which each phase has progressed before being required. So, in

Table 5.11, a similar analysis to that above is performed, but this time, instead of counting the length

as across phases, the length of each dependency is counted as the position which that phase occupies

in the STM. Thus, if a phase is in the third position of the STM when referred to, then the length

of the dependency will be given as three. This table shows that the dependency lengths possess a

similar range to that in the previous one, although there is a greater concentration in the shortest

lengths, as might be expected. The limited number of longer dependencies still extend to the same

length, and this is due to isolated words or punctuation symbols which are referred to only the once

during each sentence.

5.2.3 Conclusion of experiments

From the technical point of view, the impact of the STM has had considerable effect, reducing train-

ing times by at least an order of magnitude. As discussed above, the actual lengths of dependencies

encountered by the network are not changed much by the addition of a STM. The experiments show

that longer STMs achieve better performance on the specific outputs of the network, however the

shorter STM still yields the best level of constituent accuracy. This is because the shorter STM

113

100

80

60

40

20

0

20 40 60 80 100

Training epochs

P
er

ce
n
ta

g
e

co
rr

ec
t

Average precision/recall

100

80

60

40

20

0

20 40 60 80 100

Training epochs

P
er

ce
n
ta

g
e

co
rr

ec
t

Grandparent relationship

100

80

60

40

20

0

20 40 60 80 100

Training epochs

P
er

ce
n
ta

g
e

co
rr

ec
t

Sibling relationship

100

80

60

40

20

0

20 40 60 80 100

Training epochs

P
er

ce
n
ta

g
e

co
rr

ec
t

Parent relationship

100

80

60

40

20

0

20 40 60 80 100

Training epochs

P
er

ce
n
ta

g
e

co
rr

ec
t

Constituent label

STM length

3

6

10

Figure 5.3: Comparison of the effects of STM length on a type C network with 80 units in every

hidden layer.

114

Length G P S total %

0 0 7354 0 7354 (38.0%)

1 2268 3134 763 6165 (31.8%)

2 1018 1037 502 2557 (13.2%)

3 568 350 211 1129 (5.8%)

4 351 173 106 630 (3.3%)

5 225 101 78 404 (2.1%)

6 157 60 54 271 (1.4%)

7 115 45 40 200 (1.0%)

8 79 30 34 143 (0.7%)

9 52 19 23 94 (0.5%)

10 36 15 24 75 (0.4%)

11 36 17 16 69 (0.4%)

12 27 17 19 63 (0.3%)

13 21 10 19 50 (0.3%)

14 16 6 16 38 (0.2%)

15 5 8 10 23 (0.1%)

16 6 8 11 25 (0.1%)

17 6 7 10 23 (0.1%)

18 4 4 6 14 (0.1%)

19 2 6 5 13 (0.1%)

20 1 3 8 12 (0.1%)

21 4 1 2 7 (0.0%)

22 0 1 4 5 (0.0%)

23 0 4 3 7 (0.0%)

24 0 1 3 4 (0.0%)

25 0 0 1 1 (0.0%)

Means 2.7 0.8 3.3 1.6

Table 5.10: Dependencies by type and length in the training corpus with less than 30 words per

sentence.

115

Dependency Length G P S total %

0 0 7354 0 7354 (38.0%)

1 2614 3011 1128 6753 (34.9%)

2 1394 1513 310 3217 (16.6%)

3 397 252 150 799 (4.1%)

4 284 127 78 489 (2.5%)

5 135 42 68 245 (1.3%)

6 62 26 48 136 (0.7%)

7 45 16 38 99 (0.5%)

8 15 10 30 55 (0.3%)

9 16 12 21 49 (0.3%)

10 6 9 17 32 (0.2%)

11 10 9 11 30 (0.2%)

12 6 9 12 27 (0.1%)

13 5 8 8 21 (0.1%)

14 1 4 10 15 (0.1%)

15 3 2 7 12 (0.0%)

16 1 4 4 9 (0.0%)

17 0 1 8 9 (0.0%)

18 2 4 4 10 (0.0%)

19 0 1 2 3 (0.0%)

20 1 0 4 5 (0.0%)

21 0 1 3 4 (0.0%)

22 0 0 2 2 (0.0%)

23 0 0 2 2 (0.0%)

24 0 0 2 2 (0.0%)

25 0 0 1 1 (0.0%)

Means 2.0 0.7 2.7 1.2

Table 5.11: Dependencies by type and length across STM in a training corpus with less than 30

words per sentence.

116

must contain fewer phases for determining the relationships between word-tags. This means the

inaccurate phases are less likely to feature in the competition for determining which relationships

to use in building up the output parse tree, and so the resultant tree is more likely to be correct.

However, more importantly, the experiments demonstrate how a connectionist network can suc-

cessfully learn to generate parse trees for sentences drawn from a corpus of naturally occurring

text. This is a standard task in computational language learning using statistical methods. Because

the same performance measures (precision/recall) can be applied to the output of the SSN as with

a typical statistical method, such as the Probabilistic Context-Free Grammar (PCFG), direct com-

parisons can be made between the two approaches. For instance, the simple PCFG can achieve

around 72% average precision/recall [48] on parsing from sequences of word-tags, and the SSN in

the above experiments achieved 80% average precision/recall when trained and tested on sentences

with fewer than 15 words. However, this is not a fair comparison, as the corpora representations,

sizes and contents are dissimilar.

In an extension to the work here, Henderson [39] has presented a slight variant of the basic SSN

model and compared its performance directly with that of PCFGs on identical corpora. In those

results, the PCFG, due to the restricted size of the training set, was only able to parse half the test

sentences, with a precision/recall figure of 54%/29%. In comparison, the SSN was able to parse

all the sentences and yielded a performance of 65%/65%. Even when counting only the parsed

sentences, the PCFG only had a performance of 54%/58%, compared to the SSN’s performance of

68%/67% on that subset. The variations introduced by Henderson [39] to the SSN mostly affect the

input layer. In this thesis, the pulsing inputs to the SSN receive input only for the newly introduced

phases, requiring the network to remember the input from previous time periods. In [39], the pulsing

input from the previous period is carried forward in its particular phase. An additional pulsing input

unit is then used to distinguish the newly introduced phase from the others. Because of this change

in input representation, the results in [39] have been achieved with a type A SSN (and no STM

was used). These results indicate that the SSN is generalising from its training data in a superior

fashion to the PCFG. [39] attributes this to the combination of the SSNs’ ability to generalise across

constituents and the ability of connectionist networks to learn their own internal representations.

(Preliminary results from the experiments in this section appeared in [40, 55], and a full descrip-

tion appears in [56].)

5.3 Conclusions

This chapter has described a set of experiments training the Simple Synchrony Network (SSN) to

parse samples of natural language taken from a corpus of naturally occurring text. The importance of

these experiments for connectionist language learning is that the SSN, tested in the previous chapter

on toy grammars, has been shown to work additionally on sentences drawn from naturally occuring

text. The SSN has achieved a consistently good performance on this task, both in terms of its spe-

cific outputs and with the constituent-level evaluation familiar from the statistical community. The

simplicity of the SSN means that these results are explicable entirely by the introduction of a rep-

resentation which generalises according to systematicity [37] into standard connectionist networks.

That is, incorporating the appropriate generic generalisation principle into connectionist networks

has produced a true AI based approach to NLP. The approach handles real natural language, out-

puts the structured parse tree representation, and also generalises well from its training data. This

makes the SSN the first serious connectionist alternative to standard statistical approaches to natural

language parsing: a claim which has been further supported by the direct comparison in [39].

117

Chapter 6

Evaluation and Conclusions

This thesis has developed a new class of connectionist architecture, the Simple Synchrony Network

(SSN), and presented experimental results achieved by the SSN in learning to parse toy grammars

and samples of real natural language. The importance of the SSN as a new machine learning al-

gorithm is discussed in this chapter by relating the theoretical and empirical results of the previous

chapters to earlier approaches in the literature. Finally, this chapter describes some areas for future

work and concludes.

6.1 Basic Results

This thesis has developed a new class of connectionist architecture, the Simple Synchrony Network

(SSN). The SSN combines two specific extensions of standard feed-forward connectionist networks

into a single architecture: Simple Recurrent Networks (SRNs), which use context units to preserve

activations from previous time periods, and so learn about patterns across time; and Temporal Syn-

chrony Variable Binding (TSVB), which uses a division of each time period into independent phases

to represent multiple entities.

This combination of SRNs and TSVB, implemented as shown in Sections 4.1.1 and 4.1.2, en-

ables a natural definition to be made of a range of trainable TSVB networks. From results achieved

in exploring this range of networks, this thesis has developed two ideas for achieving the most effec-

tive learning from TSVB networks. The first idea is a restriction to the range of possible networks.

The variety of networks arises because TSVB networks contain more than one type of unit, pulsing

and non-pulsing. However, there are interactions between these units which affect the efficiency of

learning. In particular, it was shown that links between pulsing and non-pulsing units lead to prob-

lems in generalising across increasing numbers of entities; the SSN is defined as a TSVB network

without such links.

The second idea addresses a computational inefficiency with this definition of SSNs, which

is the assumption that all phases are retained within the network over the processing time of the

current sentence. This is theoretically unnecessary, as shown by limitations on human short-term

memory [16, 70], and computationally undesirable, due to the protracted training times it entails.

Therefore, a further important contribution of this thesis is a mechanism for ensuring that only

the relevant constituents within a sentence are processed. This model is known as the STM-SSN.

Because much of the discussion in this chapter concerns the theoretical abilities of the network,

only the SSN is referred to throughout; the STM is an extension to the SSN, which enables more

efficient training and processing by removing superfluous phases.

The SSN has been argued to be an appropriate connectionist architecture for natural language

processing on the grounds that, firstly, the SSN can output structured representations, such as parse

118

trees, and secondly, the SSN can generalise information learned across multiple entities, such as

constituents within the parse tree. Further, because the SSN is essentially an SRN with added

TSVB, the proven ability of the SRN to learn about patterns across time has been retained and

augmented.

These properties have been tested experimentally by training the SSN on two toy grammars.

In addition, the SSN has also been shown to learn to parse samples of real natural language. The

ability of the SSN to learn both from toy grammars and from naturally occurring sentences makes it

a significant new architecture for connectionist language learning. The specific features of the SSN

are not, however, language specific, and so may be applied to a wider range of tasks requiring the

output of similarly structured information.

6.2 Evaluation and Comparisons

In the introductory chapter it was argued that a machine learning algorithm may be judged either in

terms of results or in terms of principles. This suggests that evaluating the SSN requires, respec-

tively, a quantitative and a qualitative comparison with earlier work. This section considers these

two issues in turn. In addition, although the principles behind the design of the SSN were motivated

by specifics of the task of learning to parse, the very fact that the application area is language per-

mits some comparisons to be drawn with areas in the cognitive literature: this is particularly true in

the case of the STM, and is discussed in the third subsection below.

6.2.1 Quantitative comparisons

The value of quantitative comparisons of machine learning algorithms is purely to determine which

has the better performance, based on some metric. To be effective, the comparisons must naturally

be obtained from the same task and employ the same metric. In this sense, two sets of experiments

with the SSN may be directly compared with results achieved in earlier work. The first of these is

the recursive grammar, used by Hadley and Hayward [33] to verify that their Hebbian connectionist

network could learn to generalise across syntactic constituents (see Section 2.3.4).

The recursive grammar experiments investigate the ability of the network to generalise across

structure. For instance, when learning that a word appearing in the subject position of a sentence is

a noun, this information should be generalised to the same word appearing in further syntactic posi-

tions, such as the object of a relative clause. As described in Section 4.2.2, the SSN’s performance

on this task is very good, demonstrating an ability to generalise across structure. This performance

may be directly compared with that of the Hebbian connectionist network [33], which demonstrated

the same ability to generalise across structure. This comparison tells us that there is nothing to

choose between the two models on an empirical level on this particular test set. As discussed below,

more qualitative considerations make the SSN more attractive, in terms of its potential for learning

about more complex grammars. This potential is tested in the experiments with the Susanne corpus,

described in Chapter 5, which forms the second set of experiments comparable with other work.

The experiments with the Susanne corpus are important in the literature on connectionist lan-

guage learning because they use a corpus of naturally occurring text as a source of sentences. The

target parse tree of the SSN is the parse tree information contained within the Susanne corpus, sub-

ject to a few structural limitations. One of the strengths of the SSN is its ability to incrementally

output a parse tree as the sentence is input. To do this, the SSN uses a representation specifying

the structural relationships between the current input word and the earlier portions of the parse tree.

This representation is the GPS representation introduced in Section 5.1.3. Because the output of the

SSN specifies a parse tree for the input sentence, it is possible to use standard measures for the preci-

sion and recall of constituents when compared with the target parse tree. This means that the SSN’s

119

performance may be compared directly with that of other parsers, such as the simple PCFG [48],

as described in Section 3.3. However, although the best SSN achieves 80% average precision/recall

on its test set, this result cannot simply be compared to the 72% achieved with simple PCFGs [48],

because the corpora used differ in representation, size and contents.

In an extension to the work here, Henderson [39] has introduced a slight variant of the basic

SSN model and compared its performance directly with that of PCFGs on identical corpora. In

those results, the PCFG, due to the restricted size of the training set, was only able to parse half

the test sentences, with a precision/recall figure of 54%/29%. In comparison, the SSN was able to

parse all the sentences and yielded a performance of 65%/65%. Even when counting only the parsed

sentences, the PCFG only had a performance of 54%/58%, compared to the SSN’s performance of

68%/67% on that subset. These results show that the SSN compares well on an empirical level with

a well-established, though basic, parser.

From the empirical evidence presented in this thesis, it is evident that the SSN is an effective

model for learning to parse. This may be explained by the presence of Temporal Synchrony Variable

Binding which provides an inherent ability to generalise across output structures. The effectiveness

of the SSN is demonstrated by specific results with toy grammars and a corpus of naturally occur-

ring text. The important point to note is that the SSN transfers its ability smoothly from the toy

grammars to the natural text. This contrasts with other connectionist approaches to language learn-

ing whose performance on toy grammars has so far not been shown to scale up beyond certain toy

grammars [43, 69]. This ability can be explained by the SSN’s more effective use of its internal

representation to support the parsing process, as described below.

6.2.2 Qualitative comparisons

This section compares three sets of earlier work with the SSN. The first is that of the holistic parser,

which can output a sequential representation of a parse tree. The second is the range of alternative

connectionist approaches to learning about language or handling structure. And thirdly, there are

non-connectionist approaches to learning to parse.

Comparison with holistic parsers

The closest connectionist approach to the SSN in terms of parsing abilities is that known as holistic

parsing, as discussed in Section 3.4.5 of Chapter 3. Holistic parsers, such as the Confluent Preorder

Parser (CPP) [43], rely on the ability of a recurrent network to represent complex information within

a distributed representation. This ability is applied to parsing by encoding a sequential representa-

tion of a parse tree (in preorder form) into the fixed-width internal representation of the network.

Two limitations have been seen in this approach. The first is that holistic parsing has only been

demonstrated for limited forms of parse tree, e.g. the CPP requires parse trees to be of fixed valency

so that the preorder encoding is unambiguous. Secondly, such parsers have not been demonstrated

to learn beyond certain toy grammars. This latter fact has been commented on by [44, 69], and

described as a fundamental limitation in the distributed representation itself, which can only store a

certain amount of information reliably.

The SSN parser, in Chapter 5, has been shown to overcome these two limitations. First, the

output representation of the SSN is not limited to fixed valency parse trees, but can produce a num-

ber of complex hierarchical representations. In particular, the SSN has demonstrated a capability

in outputting parse trees from a standard (and only slightly modified) corpus of naturally occurring

text. Second, the fact that the SSN does learn effectively from such a corpus of natural language, as

shown here and in [39], demonstrates that the SSN has circumvented some of the capacity limita-

tions apparent in the holistic approach.

120

The advantages of the SSN are due to the way it produces an output parse tree. The holistic

parser builds up a distributed representation from its input sentence, which is then unfolded into a

parse tree by a separate mechanism. This technique requires the holistic representation to encode

all the information within the sentence required for constructing the parse tree; in some forms of

holistic parser, additional information is also encoded to support various transformations [8, 14].

The SSN adopts almost the opposite approach to producing its parse tree. The SSN employs tem-

poral synchrony, and uses the phases within each time period to represent the syntactic constituents

within a parse tree. Because the structural information is held across phases, and the information

about words and constituent labels is held within the activations on particular phases, the struc-

tural information about the parse tree is held independently from the information about individual

constituents. This enables the SSN to generalise across syntactic constituents, as discussed in Sec-

tion 2.3.5. But in addition, it means that the structural and constituent information need not be

output at the same time. This idea enables the SSN parser to incrementally output parse trees: for

each input word, the parser outputs the label for any newly introduced constituent, and every relation

which that word has with previous constituents.

This manner of outputting parse trees by the SSN illustrates a combined usage of local and dis-

tributed representations. First, the internal units of the SSN use distributed representations to encode

information about the entire sentence (on the non-pulsing units) and individual constituents (on the

entire sentence). But the constituents are represented on independent phases within the time period,

and so are, in a sense, locally represented. Hence the output of the parse tree can rely on the dis-

tributed internal representation for computation to ensure robust application of its learnt knowledge,

but rely on the local use of time to clarify the relations between constituents. This contrasts with

the internal representation used by the holistic parser, which is entirely distributed, both in terms of

its description of individual constituents and their inter-relations. This representational technique

is entirely due to the use of pulsing and non-pulsing units within the SSN; the pulsing units enable

the SSN to output structured information, as discussed in Section 4.1.5, and the non-pulsing units

interact with the pulsing units to ensure sufficient information is brought to bear when outputting

the desired relations.

This incremental approach of the SSN to outputting a parse tree has a number of benefits in

terms of the resources required of the network when parsing. First, the parser need not memorise

what it has done before, because that information has already been output. Second, the parser is

able to apply all its resources to outputting the relations between the current word and the previous

constituents. Finally, the fact that not all previous constituents are likely to be required in practise

means that the parser can safely forget about some of them for processing the remainder of a sen-

tence. These three factors imply that the burden placed on the internal representation of the SSN

parser is less than that of the holistic parser, and hence enable the SSN to focus its resources more

on the task of parsing than on the task of memorising. These facts also suggest that the SSN may

provide similar advantages in other domains requiring the output of similarly structured representa-

tions.

Comparison with other connectionist models

Apart from the holistic parsers, a number of other connectionist approaches to language learning

have been discussed within this thesis. The holistic parser itself is an extension of the simpler

recurrent networks, which have been popular in connectionist language learning due to their ability

to learn about sequences over time. In particular, the Simple Recurrent Network (SRN) [18, 19]

has been used extensively, although its successes have been confined to two basic tasks: learning

to predict the next word in a sentence [19, 21, 81] or to assess whether a sentence is grammatical

or not [60, 62]. Each of these only requires the SRN to output a single piece of information, either

121

the predicted word for each output, or else to indicate the grammaticality after the whole sentence

has been input. Neither of these tasks is structured in the sense of producing a representation such

as a parse tree. The SSN itself is an extension of the SRN, and provides the SRN with the ability

to output a hierarchically structured representation. As discussed above, the difference between

the SSN’s extension of SRNs and that of holistic parsers is that the SSN incrementally outputs its

representation, using temporal synchrony to represent the relations between output constituents.

This enables the SSN to generalise across syntactic constituents, which has been argued to play an

important role in language learning [24, 30, 31].

The use of TSVB is not the only approach to including such generalisations within connectionist

networks. An alternative approach to representing multiple entities within a connectionist network

is that of tensor product variable binding [98], which uses a spatial distribution of units within the

network instead of the temporal distribution used by TSVB. This form of representation is used by

Hadley and Hayward [32, 33], as discussed in Section 2.3.4, in which a specific network architec-

ture is shown to generalise across syntactic constituents in the context of a specific toy grammar.

However, the network requires a specific internal structure to ensure that the appropriate generali-

sations are made, and this structure is not independently motivated. At present, the network only

applies to extracting the case-role triple (agent,action,patient) from simple sentences, and extending

this to more complex information would require extensive additions to the network. Given that the

SSN in Section 4.2.2 has shown an equivalent ability to generalise across syntactic constituents, it

is evident that the SSN and Hadley and Hayward’s network provide for equivalent generalisation

abilities, but the SSN is a more parsimonious architecture; this parsimony is borne out in Chapter 5

where essentially the same network is applied to naturally occurring sentences.

A second approach to generalising across syntactic constituents is that adopted by the Subsym-

bolic Parser [68], discussed in Section 3.4.6. With this network, three separate mechanisms guide

the parsing process: a parser, a segmenter and a stack. SPEC is limited in its output to simple

(agent,action,patient) triples, and does not provide any indication of their structural inter-relation.

SPEC demonstrates generalisation across syntactic constituents by forming the same triples irre-

spective of the larger syntactic context of that part of the sentence. This is achieved through the seg-

menter and stack mechanisms which respectively determine where the breaks are between phrases

in the sentence, and hold information about the state of the network across phrases. SPEC’s output

representation clearly is not comparable with that possible from the SSN, and in addition [69] points

out that SPEC’s internal representations suffer capacity limitations rather like those found in holistic

parsers [44].

One further approach to extending recurrent networks to handle structured representations is

to use Generalised Recursive Neurons (GRNs) [95], as discussed in Section 2.3.3. Rather as the

standard recurrent network can be unfolded across the temporal structure of the input, a network of

GRNs can be unfolded across the representational structure of the input. However, this approach is

most suited to classifying structured input representations [25], or transforming the information at

the nodes of equivalently structured input and output representations [26]. This appears to limit the

applicability of the approach to an application such as parsing, in which a sequential input structure

must be transformed into a hierarchical output structure: no such application has currently been

demonstrated.

Comparison with other parsers

Chapter 3 introduced two other classes of parser, a symbolic-style technique known as PARSI-

FAL [63], and the statistical algorithm, Probabilistic Context-Free Grammars (PCFGs) [9, 48].

PARSIFAL is an example of a classical parser based on an incremental processing of the input

sentence to create an output parse tree. This incremental processing uses a restricted form of look-

122

ahead to substitute for search when parsing, so that it can consider the next couple of words when

deciding how to parse the current word. The SSN parser adopts a similar incremental output for

processing sentences as with PARSIFAL, although it cannot look-ahead at present. What is inter-

esting is that the SSN learns its internal weights in order to generate the desired parse trees, whereas

PARSIFAL must be preprogrammed with an adequate ruleset.

PCFGs are a relatively simple statistical algorithm for learning to parse from samples of natural

language. They offer a useful benchmark for assessing the performance of the SSN parser, as is

done in [39]. What is interesting about the PCFG is that the same general principles within the SSN

are also present within the PCFG: the PCFG outputs structured information (the parse trees), learns

about sequences of words (sentences), and uses a compositional grammar to inherently generalise

learned information across syntactic constituents. The SSN combines TSVB with SRNs to provide

a general-purpose architecture formed from these principles. The PCFG instead incorporates these

principles into a specialist architecture for learning about natural language. The SSN is therefore

interesting within the broader context of computational linguistics in that it achieves good results in

a field previously dominated by specialised algorithms such as the PCFG.

6.2.3 Linguistic issues

The SSN developed in this thesis has been motivated by engineering concerns: how best to design

a connectionist parser. However, because these concerns were largely motivated by the target appli-

cation of parsing, it is reasonable to consider whether the success of the SSN implies any intrinsic

linguistic value to these issues. There are two ideas that may be discussed in this context. The first

is the type of representation, or parse tree, which the SSN parser can output, and the second is the

role of the STM in reducing the resource requirements of the SSN parser.

Parse tree representations

The type of representation output by the connectionist models discussed in this thesis have differed

in many respects with the amount of information output and the degree of structure contained within

that information. At the simpler level are the basic tagger-type networks, such as the Simple Recur-

rent Network, which can output a label for each word based on its context, but not the relationship

between each label and any others. More complex are those which output information grouped into

the particular actions described within the sentence. These use a case-role representation, such as

the (agent, action, patient) triples found within the SPEC [68] network and the Hebbian network

of Hadley and Hayward [32, 33]. This representation expresses the semantic relationship between

a number of entities within the sentence, and, with the Hebbian network, includes the further rela-

tionship between these triples contained in sentences with relative clauses.

However, neither of these capture the full generality of the structure contained within a parse

tree. A parse tree can include information about the relationships between almost any words within

a sentence. Both holistic parsers [44] and the SSN parser described in this thesis can output such

representations. However, each has their own limitations. With the holistic parser, this limitation is

contained in the requirement that the parse tree be encoded into a sequential description. For exam-

ple, the Confluent Preorder Parser [43], a specific type of holistic parser, uses a preorder encoding

of the parse tree which requires the parse tree to be of fixed valency.

The SSN parser can output parse trees of arbitrary valency, but is restricted in its current in-

put/output format to parse trees whose number of internal nodes does not exceed that of the number

of input words. This limitation restricts the complexity of the trees which the SSN can output, but

is still adequate to output the parse trees from a standard corpus with only a few modifications nec-

essary. An extension to the SSN input/output format is described in the next section which may

overcome this limitation, and so enable the SSN to directly represent more complex parse trees.

123

A further extension to the SSN parser would improve the information within the labels output

for each node within the parse tree. At present, these labels are taken from a standard set of category

labels, as used within the SUSANNE corpus. In principle, these labels could be extended to include

information output by more complex grammars, such as the slash categories within the Generalised

Phrase Structure Grammar [29].

Bounded resource effects

The SSN, as defined in Chapter 4, can in principal use as many phases as it requires for solving a

given problem. This of course means that the amount of computational time required by the SSN

will grow in direct proportion to the number of phases. For instance, with the experiments in this

thesis, each word on the input introduces one additional phase to the SSN, and so the total number

of phases computed over during an entire sentence isO(n2), where n is the number of words within

the sentence.

Considerations of the language-specific requirements of the task of learning to parse tell us that

not all these phases may be required. The basic SSN retains all its introduced phases because,

in theory, any later input may require an output to signal a relation to any earlier input. With

the language experiments, each phase identifies a separate constituent within the sentence. The

theoretical possibility that any input may be related to any other input has the practical consequence

that all grammatical sentences should be treated equally. This, however, is manifestly not the case.

For example, the sentence ‘the dog chased the cat that bit the rat that died’ is easily understood, but

the equivalent ‘the rat that the cat that the dog chased bit died’ is not. The difference between these

two sentences is that, in the former, each noun phrase may be forgotten as soon as the following

verb has been seen. In the latter, all the noun phrases must be retained in memory so that their

relationships to the later verbs can be determined.

The standard explanation for this phenomenon is in the form of a memory capacity limit [16,

70]; as the sentence is processed, there are limits on how many constituents may be retained for

modification by later parts of the sentence. Sentences which violate these limits, such as the second

one above, will be hard or impossible to understand. Within the context of the SSN parser, a memory

limit on the number of constituents corresponds directly to a memory limit on the number of phases

which the SSN can use for outputting relations between later words and earlier constituents. This

limit is implemented in the SSN in the form of the STM.

The main advantage of the STM for the SSN is in reducing resource requirements for learning

to parse. By having a fixed number of phases, the time requirements for the SSN are now only a

fixed proportion of the length of the input sentence, i.e. O(n). The fact that the STM is valuable

in this specific task of learning to parse is a feature of natural language. However, the STM will

be valuable, as an efficiency device, for any domain where the maximum length of the dependency

which the SSN should output is significantly less than the maximum length of the total sequence

which is being processed.

Section 5.2 contained a discussion of the dependency lengths within a sample of the SUSANNE

corpus. There it was found that around 90% of the dependencies would fit within a STM of 3 items.

This agrees extremely well with the predictions of four items by Cowan [16] and of seven items

by Miller [70]. It must be remembered though that the syntactic parser would only form a part of

a complete sentence analyser. A more complete system would additionally take into account the

semantics of the situation and a number of default assumptions. Such additional factors account

for the remaining 10% of the dependencies which extended almost up to the total length of the

sentences. For example, the STM for active constituents only relates to the short-term memory of a

cognitive system; there is an additional long-term memory, which would likely store more important

aspects of the sentence, and provide default values for some of the words or particularly punctuation.

124

An interesting extension of the current work would be to embed the SSN parser within such a more

comprehensive system; however, the potential of the SSN as a cognitive model is limited, unless a

more plausible learning mechanism to backpropagation can be adopted.

6.3 Further Work

The results of this thesis may be used as a basis for further work in three broad areas: further

applications, theoretical extensions and refinements for connectionist language learning.

Further applications One of the strengths of the SSN is that its architecture has been designed

to be as general as possible for tasks requiring the output of structured representations. Therefore

the good results achieved in one such task, natural language, should encourage use of the SSN in

similar tasks. For example, work with protein structure uses grammatical models similar to those

used for natural language [5] and the SSN may be readily applied to such domains.

The existence of a trainable architecture for TSVB connectionist networks also has implica-

tions for connectionist implementations of cognitive models. For example, the ACT model of An-

derson [3] employs production-rules as the representation most likely to correspond with human

cognition. The interaction of these production-rules is implemented as the spreading of activation

between competing sets of neurons; an implementation intended to correspond with biological neu-

rons. However, this implementation mechanism has a weakness in that production-rules support the

use of variables, whereas the standard definition of neurons does not. Specifically, production-rules

rely on an abstraction from specific pieces of data for their generality, and this generality is achieved

by variabilising each chunk. Thus, “the variable is the critical element in achieving production-rule

generality. Oddly, it is proper treatment of variables that is causing some of the greatest difficulties

for connectionist theories of mind.” [93].

The production-rule model of cognition relies upon two elements of learning. The first is a

declarative form of learning, whereby the production-rule is formed. The second is a fine-tuning of

this rule for specific applications. Within the neural implementation of ACT proposed by Ander-

son [3] it is noted that the problem is not the representation of the rule as neurons, but the problem

of multiple instantiations of that rule. These multiple instantiations can be achieved if the neu-

rons employ TSVB. Further, the training of these rules can be achieved using the extended form of

Backpropagation Through Time developed in this thesis.

Extensions One area where the model is weak is the representation of relations, that is functions

over tuples of variables. For example, one classic application of AI techniques is in performing

actions on a particular world. The blocks-world example is one such, using a description of the

world in terms of blocks, block(x), and relations between them, on(x, y). The task being to output

operations such as put on(x, y). Could TSVB networks as described in this thesis be extended to

this problem?

The extension of connectionist networks to using pulsing units involves the addition of a single

dimension of data output to each unit. This process can be extended by the addition of further

dimensions of output. The question is one of interpretation, and the existence of any constraints

between the dimensions so constructed.

For the purpose of representing relations, doubly-pulsing units may be used, i.e. units which

have two sets of additional dimensions. The phases on each of the two dimensions would be inter-

preted as representing the same set of variables, i.e. for a phase representing x in one dimension,

there is a phase representing x in the second dimension. A constraint must accordingly be placed

on the weights so that weight changes learned for phase x in one dimension are also applied to the

125

weight changes learned for phase x in the second dimension. The relation on(x,y) would then be

represented by having the unit pulse in the phase representing x in one dimension, and, during that

phase, in the secondary phase representing y in the second dimension. It is an open question as to

whether these relations may be trained from experience, so that the network, for instance, can learn

to perform a task such as “construct-tower”.

Refinements The basic aim in this thesis was to construct the ‘cleanest’ implementation of train-

able TSVB networks possible. Hence, the use of different training options and the impact of dif-

ferent error functions was not investigated. This leads to the beneficial conclusion that the TSVB

networks described in this thesis possess the abilities demonstrated in the experiments with natural

language as inherent features of their design. More sophisticated error functions for training, more

suitable output representations and different choices of network architecture can only improve on

the results obtained here.

More language parsing The experiments in natural language parsing described in this thesis

could be improved in a number of ways. First, it is important to work with larger corpora. For

instance, statistical parsers are trained using databases up to a thousand times larger than those used

here. It can also be expected that larger training sets will improve the performance of the parser,

due to a greater exposure to all the possible parses. (This expectation is not without precedent:

Eisner [17] reports that a parser trained with a corpus of 4000 words had twice the error of the

same parser trained with a corpus of 25,000 words.) A further improvement would be to use a large

corpus and training with the actual words as input to the network. Ideally, both of these extended

experiments would be done with a corpus also used in training and testing a PCFG, so that a direct

comparison may be made.

Finally, as discussed in Section 5.1.2, the limitation of the SSN’s basic output representation to

providing only one new constituent per input word enforced some changes in the parse trees within

the training corpus. It is important to develop some further incremental representations of parse

trees, or altered versions of the SSN, which would enable the SSN to output exactly the target parse

tree supplied in the corpus. Two possibilities for this are as follows:

� Allow the SSN to use one phase for more than one constituent. For instance, two new con-

situents could be introduced in one phase by activating the P and G outputs within that phase:

the G output implying that the new phase is also the grandparent of the current word, and

hence the parent of the new constituent referred to by the P output. An additional ‘great-

grandparent’ output relation would also be required, for specifying an earlier phase as the

parent node for the parent of the two new constituents. This scheme has two difficulties.

Most importantly, the phase numbers can no longer be used to unambiguously indicate an

earlier constituent, although possibly the constituent labels could be used for this. In addi-

tion, it would be difficult to provide a label for the two new constituents, as previously the

label outputs always referred to the unique new constituent.

� A second approach is to provide the SSN with an unused phase (this could be provided in

the input, i.e. a specific input unit for the unused phase, active in the relevant phase). A word

which introduced two new constituents would then activate the P output in its own phase, the

G output in the unused phase, and use a ‘great-grandparent’ output unit to indicate any earlier

phase as the parent node of the one introduced by the G output. Note that this approach avoids

the labelling problems of the previous one, because each new constituent is in its own unique

phase.

126

Such approaches can evidently be extended for any finite number of constituents which might

be introduced at any given time. Analysis of different corpora would be needed for determining the

precise number required.

6.4 Conclusion

This thesis has defined a new connectionist architecture, the Simple Synchrony Network, and em-

pirically verified its ability to generalise in specific ways across structured representations. As is

implicit in the suggestions for further work above, the theoretical and experimental results of this

thesis extend beyond language learning. It is apparent that the SSN architectures and short-term

memory mechanisms are not specifically adapted to natural language. Thus their ability to learn

about and manipulate structured information is a very general one. Taking the specific input-output

representations used in this thesis as a model, the SSN may be applied to a range of other domains

which also use structured information. The SSN therefore extends the range of applications for

which connectionist networks may be used.

127

Appendix A

Experimental results

This Appendix contains tabulated results for the experiments on the shorter training set described

in Chapter 5. Four network sizes were trained for each type of Simple Synchrony Network, and

three lengths of short-term memory (STM) queue for each network size. Each network was trained

for 100 epochs, and evaluated after every 20 epochs against the short cross validation set which

contains sentences of less than 15 word-tags. These tables contain the results of these evaluations,

each table contains the results from the four network sizes of a particular network type and STM

length.

128

Type A Networks: STM of 3

Epochs /38 Precision Recall G P S Label

25 units in hidden layer

20 0 17.9 14.8 9.2 49.9 0.0 84.2

40 0 28.5 23.1 9.2 58.1 0.0 84.0

60 0 16.7 13.5 8.4 49.0 2.7 84.2

80 0 20.8 14.4 9.2 42.5 2.7 84.2

100 0 19.7 13.5 7.6 41.4 0.0 84.4

50 units in hidden layer

20 0 26.1 22.7 6.9 60.3 2.7 84.4

40 0 26.3 22.7 6.9 61.6 2.7 84.0

60 0 25.0 21.4 17.6 61.4 2.7 84.0

80 0 28.0 22.2 16.0 56.7 2.7 84.2

100 0 29.7 22.3 13.7 55.6 16.0 84.0

75 units in hidden layer

20 0 27.6 23.6 22.9 61.1 18.7 84.4

40 0 26.4 22.7 18.3 60.8 17.3 84.7

60 0 28.9 24.5 22.9 60.8 18.7 84.9

80 0 29.4 23.1 18.3 57.3 18.7 84.7

100 0 30.3 23.6 22.9 56.7 18.7 84.4

100 units in hidden layer

20 0 25.7 21.4 16.8 60.3 18.7 84.4

40 0 27.7 23.1 17.6 61.4 18.7 84.4

60 0 28.2 24.0 22.9 61.6 18.7 84.9

80 0 27.1 22.7 17.6 61.1 18.7 84.7

100 0 29.7 24.9 31.3 60.3 18.7 84.7

Table A.1: SSN Type A: Cross validation results for STM length 3.

129

Type A Networks: STM of 6

Epochs /38 Precision Recall G P S Label

25 units in hidden layer

20 0 27.6 21.8 0.8 57.8 0.0 84.7

40 0 27.7 22.7 3.8 60.0 4.0 84.7

60 0 27.5 22.7 3.8 60.8 4.0 84.7

80 0 27.8 22.7 3.8 60.3 4.0 84.7

100 0 29.3 24.0 8.4 60.5 4.0 84.7

50 units in hidden layer

20 0 27.8 25.8 9.9 63.8 16.0 84.7

40 0 28.6 26.6 13.7 64.7 17.3 84.9

60 0 28.6 26.6 13.7 64.7 17.3 84.9

80 0 28.6 26.6 17.6 64.7 18.7 84.9

100 0 28.6 26.6 17.6 64.7 18.7 84.9

75 units in hidden layer

20 0 28.5 26.6 16.0 64.7 17.3 84.9

40 0 28.6 26.6 17.6 64.7 17.3 84.9

60 0 28.6 26.6 17.6 64.7 18.7 84.9

80 0 28.5 26.6 16.8 64.7 18.7 84.9

100 0 28.5 26.6 26.0 64.7 18.7 84.9

100 units in hidden layer

20 0 30.5 25.3 32.1 60.3 18.7 84.4

40 0 30.5 25.3 33.6 60.8 18.7 84.7

60 0 30.4 25.3 33.6 61.4 18.7 84.7

80 0 30.4 28.4 33.6 65.2 18.7 84.4

100 0 30.4 28.4 33.6 65.2 18.7 84.4

Table A.2: SSN Type A: Cross validation results for STM length 6.

130

Type A Networks: STM of 10

Epochs /38 Precision Recall G P S Label

25 units in hidden layer

20 0 18.2 14.0 0.8 47.7 0.0 84.7

40 0 17.9 14.4 0.8 49.6 0.0 84.7

60 0 17.2 13.5 0.8 48.8 0.0 84.7

80 0 17.9 14.4 0.8 49.9 0.0 84.7

100 0 17.9 14.4 0.8 49.9 0.0 84.7

50 units in hidden layer

20 0 27.9 23.1 16.0 60.3 17.3 84.9

40 0 27.9 23.1 16.0 60.3 17.3 84.9

60 0 28.6 26.6 14.5 64.1 17.3 84.9

80 0 28.6 26.6 16.8 64.1 17.3 84.9

100 0 28.6 26.6 16.8 64.1 17.3 84.9

75 units in hidden layer

20 0 28.6 26.6 16.8 64.4 17.3 84.9

40 0 28.6 26.6 17.6 64.9 17.3 84.9

60 0 28.5 26.6 17.6 65.2 18.7 84.9

80 0 28.5 26.6 17.6 65.2 17.3 84.9

100 0 28.5 26.6 17.6 65.2 18.7 84.9

100 units in hidden layer

20 0 30.5 25.3 27.5 60.3 18.7 84.7

40 0 31.0 28.8 25.2 64.7 18.7 84.9

60 0 30.5 25.3 30.5 60.8 18.7 84.7

80 0 31.8 29.7 30.5 65.2 18.7 84.7

100 0 31.8 29.7 30.5 65.2 18.7 84.7

Table A.3: SSN Type A: Cross validation results for STM length 10.

131

Type B Networks: STM of 3

Epochs /38 Precision Recall G P S Label

20 units in each hidden layer

20 4 45.1 42.4 37.4 79.5 61.3 86.6

40 6 48.8 46.3 54.2 81.6 60.0 88.8

60 5 50.2 48.5 50.4 83.6 56.0 90.9

80 5 50.5 48.0 55.7 83.8 56.0 92.1

100 5 51.4 48.5 56.5 82.5 58.7 90.4

40 units in each hidden layer

20 5 47.7 45.4 43.5 81.4 56.0 87.6

40 6 54.8 52.4 52.7 89.3 57.3 90.9

60 5 62.8 59.0 68.7 87.9 64.0 93.3

80 6 61.1 59.0 70.2 91.0 61.3 94.5

100 7 67.7 64.2 74.0 91.2 61.3 95.9

60 units in each hidden layer

20 5 47.8 42.4 47.3 78.1 62.7 88.3

40 3 55.7 51.5 66.4 86.8 62.7 93.1

60 6 60.9 57.2 70.2 88.8 62.7 95.2

80 7 66.2 64.2 68.7 93.2 65.3 94.5

100 6 60.9 58.5 69.5 89.3 61.3 94.5

80 units in each hidden layer

20 5 50.5 45.9 57.3 81.4 65.3 89.7

40 6 58.0 52.0 67.2 84.4 64.0 92.3

60 4 65.1 61.1 63.4 89.6 65.3 95.2

80 8 67.4 64.2 70.2 92.1 65.3 96.9

100 10 71.5 71.2 74.8 95.6 70.7 96.4

Table A.4: SSN Type B: Cross validation results for STM length 3.

132

Type B Networks: STM of 6

Epochs /38 Precision Recall G P S Label

20 units in each hidden layer

20 5 47.2 44.5 46.6 77.8 64.0 86.1

40 5 50.9 47.6 47.3 77.5 64.0 87.1

60 6 51.4 48.5 47.3 81.1 72.0 90.0

80 6 50.0 47.6 44.3 82.7 70.7 91.9

100 5 45.0 49.0 38.9 80.3 76.0 91.4

40 units in each hidden layer

20 5 45.6 42.8 42.0 79.5 81.3 88.3

40 6 49.8 45.4 55.7 80.3 81.3 92.1

60 7 49.5 46.3 55.0 84.1 78.7 92.1

80 9 57.1 54.1 57.3 87.9 76.0 94.5

100 8 61.1 57.6 58.8 89.3 78.7 95.9

60 units in each hidden layer

20 6 48.0 46.7 44.3 82.2 84.0 86.8

40 7 59.1 55.5 56.5 86.6 84.0 90.7

60 9 60.0 55.0 60.3 86.8 81.3 90.9

80 8 59.5 55.9 71.8 86.6 82.7 91.9

100 7 61.4 57.6 62.6 89.6 82.7 91.6

80 units in each hidden layer

20 6 49.5 44.5 46.6 76.2 81.3 86.4

40 7 57.6 54.6 49.6 80.3 74.7 90.9

60 8 62.3 59.8 64.1 92.3 81.3 94.5

80 10 62.4 60.3 67.9 93.7 85.3 94.7

100 12 65.3 64.2 82.4 92.6 85.3 96.2

Table A.5: SSN Type B: Cross validation results for STM length 6.

133

Type B Networks: STM of 10

Epochs /38 Precision Recall G P S Label

20 units in each hidden layer

20 6 46.6 45.0 40.5 80.5 81.3 86.4

40 6 49.8 47.6 45.0 81.6 74.7 89.5

60 6 48.4 46.3 42.0 82.7 70.7 90.2

80 5 44.6 41.5 45.0 80.0 62.7 89.7

100 7 50.0 49.3 44.3 83.3 69.3 88.8

40 units in each hidden layer

20 6 44.2 41.9 48.9 78.1 74.7 85.2

40 6 50.9 47.6 51.1 82.7 77.3 89.2

60 6 53.7 51.1 52.7 86.3 74.7 93.1

80 8 53.3 54.7 56.5 87.4 78.7 94.7

100 9 57.9 55.9 62.6 89.3 84.0 95.5

60 units in each hidden layer

20 5 46.4 42.8 49.6 77.0 76.0 86.4

40 5 54.1 52.0 45.0 89.0 82.7 90.7

60 7 55.9 52.0 50.4 87.9 80.0 91.6

80 7 54.7 53.7 53.4 88.2 86.7 93.3

100 9 61.2 58.5 61.1 90.1 89.3 94.3

80 units in each hidden layer

20 6 46.1 43.7 42.0 81.1 81.3 88.3

40 7 48.3 44.1 60.3 87.7 78.7 90.4

60 5 47.2 45.0 48.1 78.1 80.0 85.2

80 10 60.8 59.0 63.4 92.3 74.7 95.7

100 11 66.4 65.5 65.6 92.9 85.3 97.4

Table A.6: SSN Type B: Cross validation results for STM length 10.

134

Type C Networks: STM of 3

Epochs /38 Precision Recall G P S Label

20 units in each hidden layer

20 5 43.6 41.9 45.8 78.4 56.0 86.6

40 4 50.5 45.9 56.5 80.5 50.7 88.5

60 4 54.5 50.7 56.5 84.7 54.7 91.4

80 5 57.0 55.0 56.5 84.7 54.7 91.4

100 5 61.0 58.1 61.8 89.9 60.0 94.3

40 units in each hidden layer

20 5 48.6 47.2 51.1 83.3 64.0 88.0

40 6 53.6 52.0 63.4 86.8 64.0 90.0

60 7 61.6 58.1 65.6 88.5 65.3 93.5

80 6 58.3 55.5 63.4 87.9 62.7 94.7

100 9 64.6 67.6 73.3 89.6 66.7 96.4

60 units in each hidden layer

20 5 50.0 47.6 45.8 83.8 60.0 87.3

40 6 57.8 56.3 64.1 90.4 62.7 92.3

60 6 62.1 60.7 67.2 94.0 64.0 94.7

80 9 66.7 65.5 71.0 94.2 62.7 96.4

100 9 68.6 67.7 74.8 95.3 62.7 97.4

80 units in each hidden layer

20 5 52.8 50.2 55.7 87.1 68.0 90.2

40 5 58.1 55.0 62.6 90.7 65.3 93.3

60 6 61.2 60.7 64.1 93.4 62.7 94.0

80 9 71.7 70.7 71.0 95.6 69.3 96.7

100 9 74.4 73.8 71.8 97.3 70.7 97.8

Table A.7: SSN Type C: Cross validation results for STM length 3.

135

Type C Networks: STM of 6

Epochs /38 Precision Recall G P S Label

20 units in each hidden layer

20 6 45.6 43.2 42.7 78.1 70.7 87.3

40 6 46.8 44.1 40.5 80.5 64.0 86.1

60 6 49.3 45.9 48.1 83.6 72.0 87.1

80 5 47.4 44.5 45.0 81.9 70.7 87.1

100 5 48.2 46.3 43.5 81.9 72.0 86.6

40 units in each hidden layer

20 6 45.9 44.5 45.8 80.0 72.0 85.6

40 6 47.7 44.5 50.4 79.5 74.7 88.3

60 7 48.2 45.9 56.5 82.2 74.7 91.1

80 9 55.5 52.8 62.6 85.5 78.7 92.1

100 10 57.5 54.1 58.0 86.0 82.7 93.5

60 units in each hidden layer

20 6 48.6 44.1 51.1 78.1 82.7 88.0

40 6 59.1 55.5 62.6 86.6 84.0 90.9

60 8 61.1 57.6 67.2 89.9 86.7 93.1

80 8 58.6 56.8 62.6 88.2 85.3 93.3

100 8 59.9 58.1 77.9 91.5 89.3 94.3

80 units in each hidden layer

20 4 45.1 41.9 49.6 78.4 80.0 87.1

40 5 57.5 53.7 56.5 85.8 85.3 91.9

60 5 58.1 55.0 57.3 89.0 85.3 94.7

80 7 61.6 58.1 68.7 89.0 81.3 95.0

100 8 63.6 61.1 68.7 91.5 81.3 95.5

Table A.8: SSN Type C: Cross validation results for STM length 6.

136

Type C Networks: STM of 10

Epochs /38 Precision Recall G P S Label

20 units in each hidden layer

20 6 42.5 40.6 33.6 76.2 77.3 85.9

40 5 44.0 41.5 46.6 77.3 70.7 86.1

60 6 49.1 46.3 43.5 80.5 74.7 88.8

80 6 49.5 45.9 46.6 79.7 74.7 87.8

100 5 44.8 41.0 47.3 78.4 78.7 88.8

40 units in each hidden layer

20 6 45.1 40.2 43.5 75.1 77.3 86.1

40 6 45.5 43.7 51.1 79.5 82.7 89.2

60 5 41.3 39.3 45.0 77.3 81.3 85.4

80 6 50.5 48.0 48.1 83.0 81.3 90.7

100 7 50.9 47.6 45.8 81.9 73.3 91.9

60 units in each hidden layer

20 5 49.8 47.6 49.6 85.5 80.0 86.6

40 7 48.8 45.4 54.2 83.8 74.7 82.5

60 8 53.6 52.4 62.6 84.7 73.3 90.9

80 9 56.0 53.3 60.3 85.8 80.0 92.3

100 11 63.3 61.1 67.2 91.8 92.0 93.1

80 units in each hidden layer

20 6 45.4 43.2 45.8 80.0 85.3 87.1

40 5 54.2 50.2 47.3 84.9 86.7 90.9

60 7 54.8 52.0 58.0 86.8 89.3 92.8

80 10 60.9 57.2 65.6 89.0 92.0 95.0

100 10 59.2 56.3 67.9 89.6 86.7 93.5

Table A.9: SSN Type C: Cross validation results for STM length 10.

137

Bibliography

[1] K. Aizawa. Exhibiting versus explaining systematicity : a reply to Hadley and Hayward.

Minds and Machines, 7:39–55, 1997.

[2] J. Allen. Natural Language Understanding. Benjamin/Cummings, California, 1987.

[3] J. A. Anderson. Rules of the Mind. Lawrence Erlbaum, 1993.

[4] A. D. Baddeley. Working Memory. New York: Oxford University Press, 1986.

[5] P. Baldi and S. Brunah. Bioinformatics. MIT Press: Adaptive Computation and Machine

Learning Series, 1998.

[6] R. Callan and D. Palmer-Brown. An analytical technique for fast and reliable derivation of

connectionist symbol structure representations. Connection Science, 9(2):139–159, 1997.

[7] D. Chalmers. Syntactic transformations on distributed representations. Connection Science,

2:53–62, 1990.

[8] D. Chalmers. Syntactic transformations of distributed representations. In N. Sharkey, editor,

Connectionist natural language processing, pages 46–55. Boston:Kluwer, 1992.

[9] E. Charniak. Statistical Language Learning. Cambridge MA:MIT Press, 1993.

[10] E. Charniak. Tree-bank grammars. In Proceedings of the Thirteenth National Conference on

Artificial Intelligence, pages 1031–1036, Menlo Park, AAAI Press/MIT Press, 1996.

[11] E. Charniak. Statistical techniques for natural language parsing. AI Magazine, 18:33–43,

1997.

[12] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA, 1965.

[13] N. Chomsky. Lectures on Government and Binding. Foris Publications, Dordrecht, Holland,

1981.

[14] L. Chrisman. Learning recursive distributed representations for holistic computation. Con-

nection Science, 3:345–366, 1991.

[15] G. W. Cottrell and M. K. Fleming. Face recognition using unsupervised feature extraction. In

Proceedings of the International Neural Network Conference, pages 322–325, Paris, France,

1990.

[16] N. Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage

capacity. Behavioral and Brain Sciences, 24(1), in press.

138

[17] J. M. Eisner. An empirical comparison of probability models for dependency grammar. Tech-

nical report, University of Philadelphia, USA, 1997.

[18] J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

[19] J. L. Elman. Distributed representations, simple recurrent networks, and grammatical struc-

ture. Machine Learning, 7:195–225, 1991.

[20] J. L. Elman. Grammatical structure and distributed representations. In S. Davis, editor,

Connectionism: Theory and Practice. Oxford University Press, 1992, 1992.

[21] J. L. Elman. Learning and development in neural networks: the importance of starting small.

Cognition, 48:71–99, 1993.

[22] S. Fahlman and C. Lebiere. The CASCADE-CORRELATION learning architecture. Tech-

nical Report CMU-CS-90-100, Computer Science Department, Carnegie Mellon University,

Pittsburgh, PA, 1990.

[23] J. A. Fodor and B. McLaughlin. Connectionism and the problem of systematicity: why

Smolensky’s solution doesn’t work. Cognition, 35:183–204, 1990.

[24] J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture: a critical analysis.

Cognition, 28:3–71, 1988.

[25] P. Frasconi, M. Gori, and A. Sperduti. On the efficient classification of data structures by

neural networks. In International Joint Conference on Artificial Intelligence, 1997.

[26] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive processing of data

structures. IEEE Transactions on Neural Networks, 9:768–786, 1998.

[27] L. Frazier and J. D. Fodor. The sausage machine: a new two-stage parsing model. Cognition,

6:291–325, 1978.

[28] R. Garside, G. Leech, and G. Sampson, editors. The Computational Analysis of English: a

corpus-based approach. Longman Group UK Limited, 1987.

[29] G. Gazdar, E. Klein, G. Pullum, and S. Ivan. Generalized Phrase Structure Grammar. Black-

well, Oxford, UK, 1985.

[30] R. F. Hadley. Systematicity in connectionist language learning. Mind and Language, 9:247–

72, 1994.

[31] R. F. Hadley. Systematicity revisited: reply to Christiansen and Chater and Niklasson and

van Gelder. Mind and Language, 9:431–44, 1994.

[32] R. F. Hadley and M. B. Hayward. Strong semantic systematicity from unsupervised con-

nectionist learning. In Proceedings of the Seventeenth Conference of the Cognitive Science

Society, Pittsburgh, PA., 1995.

[33] R. F. Hadley and M. B. Hayward. Strong semantic systematicity from Hebbian connectionist

learning. Minds and Machines, 7:1–37, 1997.

[34] D. J. Hand. Construction and Assessment of Classification Rules. John Wiley and Sons Ltd,

1997.

139

[35] J. B. Henderson. Structure unification grammar: A unifying framework for investigating

language. Technical Report MS-CIS-90-94, University of Pennsylvania, Philadelphia, PA,

1990.

[36] J. B. Henderson. Description Based Parsing in a Connectionist Network. PhD thesis, Uni-

versity of Pennsylvania, 1994.

[37] J. B. Henderson. A connectionist architecture with inherent systematicity. In Proceedings of

the Eighteenth Conference of the Cognitive Science Society, pages 574–579, La Jolla, CA,

1996.

[38] J. B. Henderson. Constituency, context, and connectionism in syntactic parsing. In

M. Crocker, M. Pickering, and C. Clifton, editors, Architectures and Mechanisms for Lan-

guage Processing, pages 189–209. Cambridge University Press, Cambridge UK, 2000.

[39] J. B. Henderson. A neural network parser that handles sparse data. In Proceedings of the 6th

International Workshop on Parsing Technologies, pages 123–134, Trento, Italy, 2000.

[40] J. B. Henderson and P. C. R. Lane. A connectionist architecture for learning to parse. In

Proceedings of the 17th International Conference on Computational Linguistics and the 36th

Annual Meeting of the Association for Computational Linguistics (COLING-ACL’98), pages

531–537, University of Montreal, Canada, 1998.

[41] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural Computation.

Addison-Wesley, 1991.

[42] E. K. S. Ho and L. W. Chan. Efficient connectionist representations of syntactic parse trees

for grammatical inference. Technical Report TR-95-15, UCI, Irvine, 1995.

[43] E. K. S. Ho and L. W. Chan. Confluent preorder parsing of deterministic grammars. Con-

nection Science, 9:269–293, 1997.

[44] E. K. S. Ho and L. W. Chan. How to design a connectionist holistic parser. Neural Compu-

tation, 11(8):1995–2016, 1999.

[45] K. Hornik, W. Stinchcombe, and H. White. Multilayer feedforward networks are universal

approximators. Neural Networks, 2:359–366, 1989.

[46] W. Y. Huang and R. P. Lippmann. Neural net and traditional classifiers. In Anderson, editor,

Neural Information Processing Systems, pages 387–396, 1988.

[47] M. F. St. John and J. L. McClelland. Learning and applying contextual constraints in sentence

comprehension. Artificial Intelligence, 46:217–257, 1990.

[48] M. Johnson. PCFG models of linguistic tree representations. Computational Linguistics,

24:613–632, 1998.

[49] M. Jordan. Attractor dynamics and parallelism in a connectionist sequential machine. In

Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pages 531–

546, 1986.

[50] J. Kimball. Seven principles of surface structure parsing in natural language. Cognition,

2:15–47, 1976.

140

[51] T. Kohonen. Self-organization of very large document collections: State of the art. In Niklas-

son et al. [74], pages 65–74.

[52] M. Kubat, I. Bratko, and R.S. Michalski. A review of machine learning methods. In R. S.

Michalski, I. Bratko, and M. Kubat, editors, Machine Learning and Data Mining, pages 3–70.

John Wiley & Sons, Chicester, England, 1998.

[53] S. C. Kwasny and K. A. Faisal. Symbolic parsing via subsymbolic rules. In J. Dinsmore,

editor, The symbolic and connectionist paradigm: Closing the gap, pages 209–236. Hillsdale,

NJ: Erlbaum, 1992.

[54] P. C. R. Lane. Simple Synchrony Networks: Learning generalisations across syntactic con-

stituents. In H. Prade, editor, Proceedings of the Thirteenth European Conference in Artificial

Intelligence, pages 469–470, Brighton, UK, 1998. John Wiley & Sons, UK.

[55] P. C. R. Lane and J. B. Henderson. Simple Synchrony Networks : Learning to parse natural

language with Temporal Synchrony Variable Binding. In Niklasson et al. [74], pages 615–

620.

[56] P. C. R. Lane and J. B. Henderson. Incremental syntactic parsing of natural language corpora

with Simple Synchrony Networks. IEEE Transactions on Knowledge and Data Engineering,

in press.

[57] K. J. Lang, A. H. Waibel, and G. E. Hinton. A time-delay neural network architecture for

isolated word recognition. Neural Networks, 3:33–43, 1990.

[58] R. W. Langacker. Foundations of Cognitive Grammar : Theoretical Perspectives, volume 1.

Stanford: Stanford University Press, 1987.

[59] P. Langley. Elements of Machine Learning. Morgan Kaufmann, 1996.

[60] S. Lawrence, S. Fong, and C. L. Giles. Natural language grammatical inference: A compari-

son of recurrent neural networks and machine learning methods. In S. Wermter, E. Riloff, and

G. Scheler, editors, Connectionist, Statistical and Symbolic Approaches to Learning for Nat-

ural Language Processing, Lecture Notes on Artificial Intelligence. Springer-Verlag, New

York, 1996.

[61] S. Lawrence, C. L. Giles, and S. Fong. On the applicability of neural network and machine

learning methodologies to natural language processing. Technical Report UMIACS-TR-95-

64, Institute for Advanced Computer Studies, University of Maryland, USA, 1995.

[62] S. Lawrence, C. L. Giles, and S. Fong. Natural language grammatical inference with recurrent

neural networks. IEEE Transactions on Knowledge and Data Engineering, in press.

[63] M. Marcus. A theory of syntactic recognition for natural language. Cambridge MA: MIT

Press, 1980.

[64] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of

English: The Penn treebank. Computational Linguistics, 19:313–330, 1993.

[65] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[66] K. McGarry, S. Wermter, and J. MacIntyre. Hybrid neural systems: From simple coupling to

fully integrated neural networks. Neural Computing Surveys, 2:62–94, 1999.

141

[67] I. Melčuk. Dependency Syntax: Theory and Practice. SUNY Press, 1988.

[68] R. Miikkulainen. Subsymbolic case-role analysis of sentences with embedded clauses. Cog-

nitive Science, 20:47–73, 1996.

[69] R. Miikkulainen. Natural language processing with subsymbolic neural networks. In

A. Browne, editor, Neural Network Perspectives on Cognition and Adaptive Robotics, pages

120–139, 1997.

[70] G. A. Miller. The magical number seven, plus or minus two: Some limits on our capacity for

processing information. Psychological Review, 63:81–97, 1956.

[71] M. Minsky. A framework for representing knowledge. In P. H. Winston, editor, The Psychol-

ogy of Computer Vision, pages 221–277. New York, McGraw-Hill, 1975.

[72] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1988.

[73] T. Mitchell. Machine Learning. McGraw Hill Companies Ltd, 1997.

[74] L. Niklasson, M. Boden, and T. Ziemke, editors. Proceedings of the Eighth International

Conference on Artificial Neural Networks, Skövde, Sweden, 1998.

[75] B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural

Computation, 1:263–269, 1989.

[76] B. Pell. METAGAME: A new challenge for games and learning. In H. J. van der Herik and

L. V. Allis, editors, Heuristic Programming in Artificial Intelligence 3 – The Third Computer

Olympiad. Ellis Horwood, 1992.

[77] J. Pollack. Recursive distributed representations. Artificial Intelligence, 46:77–105, 1990.

[78] D. A. Pomerleau. Knowledge-based training of artificial neural networks for autonomous

robot driving. In J. Connell and S. Mahadevan, editors, Robot Learning, pages 19–43.

Boston:Kluwer Academic Publishers, 1993.

[79] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

[80] R. Reilly. Connectionist techniques for on-line parsing. Network, 3:37–45, 1992.

[81] R. G. Reilly. Enriched lexical representations, large corpora, and the performance of srns. In

Niklasson et al. [74], pages 405–410.

[82] T. J. Reynolds, E. B. Pizzolato, and C. Antoniou. Multinet: A new connectionist architecture

for speech recognition. In Niklasson et al. [74], pages 257–262.

[83] D. L. T. Rohde and D. C. Plaut. Simple recurrent networks and natural language: How impor-

tant is starting small? In Proceedings of the Nineteenth Annual Conference of the Cognitive

Science Society, pages 656–661. Hillsdale, NJ: Lawrence Erlbaum Associates, 1997.

[84] D. L. T. Rohde and D. C. Plaut. Language acquisition in the absence of explicit negative

evidence: how important is starting small? Cognition, 72:67–109, 1999.

[85] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error

propagation. In Rumelhart et al. [86].

142

[86] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors. Parallel Dis-

tributed Processing: Explorations in the microstructure of cognition, volume 1. MIT Press:

Cambridge MA, 1986.

[87] G. Sampson. English for the Computer. Oxford University Press, Oxford, UK, 1995.

[88] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal

of Research and Development, 3:211–229, 1959.

[89] T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce English text.

Complex Systems, 1:145–168, 1987.

[90] N. E. Sharkey and A. J. C. Sharkey. A modular design for connectionist parsing. In Pro-

ceedings of the Twentieth Workshop on Language Technology 3: Connectionist and Natural

Language Processing, pages 87–96, 1992.

[91] L. Shastri. Exploiting temporal binding to learn relational rules within a connectionist net-

work. Technical Report TR-97-003, International Computer Science Institute, Berkeley, CA,

1997.

[92] L. Shastri and V. Ajjanagadde. From simple associations to systematic reasoning: A connec-

tionist representation of rules, variables, and dynamic bindings using temporal synchrony.

Behavioral and Brain Sciences, 16:417–494, 1993.

[93] P. Smolensky. Tensor product variable binding and the representation of symbolic structures

in connectionist systems. Artificial Intelligence, 46:159–216, 1990.

[94] A. Sperduti. Stability properties of labeling recursive auto-associative memory. IEEE Trans-

actions on Neural Networks, 6:1452–1460, 1995.

[95] A. Sperduti and T. Starita. Supervised neural networks for classification of structures. IEEE

Transactions on Neural Networks, 8:714–735, 1997.

[96] G. Z. Sun, C. L. Giles, H. H. Chen, and Y. C. Lee. The neural network pushdown au-

tomata: Model, stack and learning simulations. Technical Report UMIACS-TR-93-77 &

CS-TR03118, College Park: University of Maryland, 1993.

[97] R. Sun. Schemas, logics, and neural assemblies. Applied Intelligence, 5:83–102, 1995.

[98] B. B. Tesar and P. Smolensky. Synchronous firing variable binding is a tensor product rep-

resentation with temporal role vectors. In Proceedings of the Sixteenth Conference of the

Cognitive Science Society, pages 870–875, 1994.

[99] C. von der Malsburg. The correlation theory of brain function. Technical Report 81-2, Max-

Planck-Institute for Biophysical Chemistry, Gottingen, 1981.

[100] R. L. Watrous. GRADSIM:a connectionist network simulator using gradient optimization

techniques. Technical Report LS92-02, Siemens Research Laboratory, Princeton, NJ, 1993.

[101] S. Wermter and R. Sun, editors. Hybrid Neural Systems. Springer, Heidelberg, New York,

2000.

[102] R. J. Williams and D. Zipser. Experimental analysis of the real-time recurrent learning algo-

rithm. Connection Science, 1:87–111, 1989.

143

[103] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent

neural networks. Neural Computation, 1:270–280, 1989.

[104] R. J. Williams and D. Zipser. Gradient-based learning algorithms for recurrent networks and

their computational complexity. In Y. Chauvin and D. E. Rumelhart, editors, Backpropaga-

tion: Theory, architectures amd applications, pages 433–486. Lawrence Erlbaum Associates,

Inc., 1995.

[105] P. H. Winston. Artificial Intelligence. second edition, Addison-Wesley, 1984.

[106] W. A. Woods. Transition network grammars for natural language analysis. Communications

of the ACM, 13:591–606, 1970.

[107] J. Zavrel and J. Venstra. The language environment and syntactic word-class acquisition. In

Proceedings of the Groningen Assembly on Language Acquisition, Groningen, 1996.

144

