This challenge requires some mathematical thought to construct an efficient solution. My solution below produces the correct answers, but part 2 is slow. Part 1 became faster when I decided to compute ranges for a row, rather than brute-force the calculation for each point. But I don't have an efficient idea for solving part 2.
One problem to come back to.
procedure main(inputs) local filename, row_number, max_range, sensors if *inputs = 3 then { filename := inputs[1] row_number := integer(inputs[2]) max_range := integer(inputs[3]) sensors := load_data(filename) # Part 1 solution write("Part 1 solution is: ", part_1(sensors, row_number)) # Part 2 solution write("Part 2 solution is: ", part_2(sensors, max_range)) } else { write("Provide a filename of data, row number and max-range") } end procedure part_1(sensors, row_number) local beacons, invalid_points, range, ranges, sensor ranges := get_ranges(sensors, row_number) invalid_points := 0 beacons := set() every range := !ranges do { invalid_points +:= range[2] - range[1] + 1 # find every beacon in this row every sensor := !sensors do { if sensor.beacon_y = row_number then { if range[1] <= sensor.beacon_x <= range[2] then insert(beacons, sensor.beacon_x) } } } return invalid_points - *beacons end procedure part_2(sensors, max_range) local ranges, x, y every y := 1 to max_range do { ranges := get_ranges(sensors, y) if *ranges = 1 then { # edge case which never happens if ranges[1][1] > 0 then { return y } else if ranges[1][2] < max_range then { return max_range * 4000000 + y } } else if *ranges = 2 then { # this is only possibility, unless point on edge x := min(ranges[1][2], ranges[2][2]) + 1 return x * 4000000 + y } else stop("Did not find solution") } stop("Did not find solution") end # Return a list of ranges for given row_number procedure get_ranges(sensors, row_number) local c, higher, horizontal_distance, i, lower local did_merge, merged_ranges, range, ranges, sensor ranges := list() every sensor := !sensors do { if abs(sensor.y - row_number) < sensor.beacon_distance then { horizontal_distance := sensor.beacon_distance - abs(sensor.y - row_number) lower := sensor.x - horizontal_distance higher := sensor.x + horizontal_distance put(ranges, [lower, higher]) } } # Merge all possible ranges every c := 1 to *ranges do { merged_ranges := list() every range := !ranges do { if *merged_ranges = 0 then put(merged_ranges, range) else { # consider each range already in merged_ranges, and try to merge this range with it did_merge := 0 every i := 1 to *merged_ranges do { if range[2] >= merged_ranges[i][1] & merged_ranges[i][2] >= range[1] then { # merge merged_ranges[i][1] := min(merged_ranges[i][1], range[1]) merged_ranges[i][2] := max(merged_ranges[i][2], range[2]) did_merge := 1 break } } if did_merge = 0 then put(merged_ranges, range) } } ranges := merged_ranges if did_merge = 0 then break } return ranges end record sensor(x, y, beacon_x, beacon_y, beacon_distance) procedure load_data(filename) local beacon_x, beacon_y, file, line, sensors, sensor_x, sensor_y file := open(filename, "r") | stop("Cannot open ", filename) sensors := list() every line := !file do { line ? { ="Sensor at x=" sensor_x := integer(tab(upto(","))) =", y=" sensor_y := integer(tab(upto(":"))) =": closest beacon is at x=" beacon_x := integer(tab(upto(","))) =", y=" beacon_y := integer(tab(0)) put(sensors, sensor(sensor_x, sensor_y, beacon_x, beacon_y, manhattan_distance(sensor_x, sensor_y, beacon_x, beacon_y))) } } close(file) return sensors end procedure manhattan_distance(x1, y1, x2, y2) return abs(x1-x2) + abs(y1-y2) end procedure min(a, b) if a < b then return a else return b end procedure max(a, b) if a > b then return a else return b end